ترغب بنشر مسار تعليمي؟ اضغط هنا

Wavelet-based fast time-resolved magnetic sensing with electronic spins in diamond

228   0   0.0 ( 0 )
 نشر من قبل Nanyang Xu
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Time-resolved magnetic sensing is of great importance from fundamental studies to applications in physical and biological sciences. Recently the nitrogen-vacancy (NV) defect center in diamond has been developed as a promising sensor of magnetic field under ambient conditions. However the methods to reconstruct time-resolved magnetic field with high sensitivity are not yet fully developed. Here, we propose and demonstrate a novel sensing method based on spin echo, and Haar wavelet transform. Our method is exponentially faster in reconstructing time-resolved magnetic field with comparable sensitivity over existing methods. Further, the wavelets unique features enable our method to extract information from the whole signal with only part of the measuring sequences. We then explore this feature for a fast detection of simulated nerve impulses. These results will be useful to time-resolved magnetic sensing with quantum probes at nano-scales.



قيم البحث

اقرأ أيضاً

Nanomechanical sensors and quantum nanosensors are two rapidly developing technologies that have diverse interdisciplinary applications in biological and chemical analysis and microscopy. For example, nanomechanical sensors based upon nanoelectromech anical systems (NEMS) have demonstrated chip-scale mass spectrometry capable of detecting single macromolecules, such as proteins. Quantum nanosensors based upon electron spins of negatively-charged nitrogen-vacancy (NV) centers in diamond have demonstrated diverse modes of nanometrology, including single molecule magnetic resonance spectroscopy. Here, we report the first step towards combining these two complementary technologies in the form of diamond nanomechanical structures containing NV centers. We establish the principles for nanomechanical sensing using such nano-spin-mechanical sensors (NSMS) and assess their potential for mass spectrometry and force microscopy. We predict that NSMS are able to provide unprecedented AC force images of cellular biomechanics and to, not only detect the mass of a single macromolecule, but also image its distribution. When combined with the other nanometrology modes of the NV center, NSMS potentially offer unparalleled analytical power at the nanoscale.
The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electro n transistors (SET), single-electron electrostatic force microscopy and scanning tunnelling microscopy. Here we open up a new quantum metrology technique demonstrating precision electric field measurement using a single nitrogen-vacancy defect centre(NV) spin in diamond. An AC electric field sensitivity reaching ~ 140V/cm/surd Hz has been achieved. This corresponds to the electric field produced by a single elementary charge located at a distance of ~ 150 nm from our spin sensor with averaging for one second. By careful analysis of the electronic structure of the defect centre, we show how an applied magnetic field influences the electric field sensing properties. By this we demonstrate that diamond defect centre spins can be switched between electric and magnetic field sensing modes and identify suitable parameter ranges for both detector schemes. By combining magnetic and electric field sensitivity, nanoscale detection and ambient operation our study opens up new frontiers in imaging and sensing applications ranging from material science to bioimaging.
Diamond-based quantum magnetometers are more sensitive to oscillating (AC) magnetic fields than static (DC) fields because the crystal impurity-induced ensemble dephasing time $T_2^*$, the relevant sensing time for a DC field, is much shorter than th e spin coherence time $T_2$, which determines the sensitivity to AC fields. Here we demonstrate measurement of DC magnetic fields using a physically rotating ensemble of nitrogen-vacancy centres at a precision ultimately limited by $T_2$ rather than $T_2^*$. The rotation period of the diamond is comparable to $T_2$ and the angle between the NV axis and the target magnetic field changes as a function of time, thus upconverting the static magnetic field to an oscillating field in the physically rotating frame. Using spin-echo interferometry of the rotating NV centres, we are able to perform measurements for over a hundred times longer compared to a conventional Ramsey experiment. With modifications our scheme could realise DC sensitivities equivalent to demonstrated NV center AC magnetic field sensitivities of order $0.1$,nT,Hz$^{-1/2}$.
We propose a general protocol for low-control refrigeration and thermometry of thermal qubits, which can be implemented using electronic spins in diamond. The refrigeration is implemented by a probe, consisting of a network of interacting spins. The protocol involves two operations: (i) free evolution of the probe; and (ii) a swap gate between one spin in the probe and the thermal qubit we wish to cool. We show that if the initial state of the probe falls within a suitable range, and the free evolution of the probe is both unital and conserves the excitation in the $z$-direction, then the cooling protocol will always succeed, with an efficiency that depends on the rate of spin dephasing and the swap gate fidelity. Furthermore, measuring the probe after it has cooled many qubits provides an estimate of their temperature. We provide a specific example where the probe is a Heisenberg spin chain, and suggest a physical implementation using electronic spins in diamond. Here the probe is constituted of nitrogen vacancy (NV) centers, while the thermal qubits are dark spins. By using a novel pulse sequence, a chain of NV centers can be made to evolve according to a Heisenberg Hamiltonian. This proposal allows for a range of applications, such as NV-based nuclear magnetic resonance of photosensitive molecules kept in a dark spot on a sample, and it opens up possibilities for the study of quantum thermodynamics, environment-assisted sensing, and many-body physics.
Recently we have demonstrated AC magnetic field sensing scheme using a simple continuous-wave optically detected magnetic resonance of nitrogen-vacancy centers in diamond [Appl. Phys. Lett. 113, 082405 (2018)]. This scheme is based on electronic spin double resonance excited by continuous microwaves and radio-frequency (RF) fields. Here we measured and analyzed the double resonance spectra and magnetic field sensitivity for various frequencies of microwaves and RF fields. As a result, we observed a clear anticrossing of RF-dressed electronic spin states in the spectra and estimated the bandwidth to be approximately 5 MHz at the center frequency of 9.9 MHz.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا