ﻻ يوجد ملخص باللغة العربية
In low-density or high-temperature plasmas, Compton scattering is the dominant process responsible for energy transport. Kompaneets in 1957 derived a non-linear degenerate parabolic equation for the photon energy distribution. In this paper we consider a simplified model obtained by neglecting diffusion of the photon number density in a particular way. We obtain a non-linear hyperbolic PDE with a position-dependent flux, which permits a one-parameter family of stationary entropy solutions to exist. We completely describe the long-time dynamics of each non-zero solution, showing that it approaches some non-zero stationary solution. While the total number of photons is formally conserved, if initially large enough it necessarily decreases after finite time through an out-flux of photons with zero energy. This corresponds to formation of a Bose-Einstein condensate, whose mass we show can only increase with time.
A Bose-Einstein condensate is created in a simple and robust miniature Ioffe-Pritchard trap, the so-called Z trap. This trap follows from the mere combination of a Z-shaped current carrying wire and a homogeneous bias field. The experimental procedur
Bose-Einstein condensates (BECs) are macroscopic coherent matter waves that have revolutionized quantum science and atomic physics. They are essential to quantum simulation and sensing, for example underlying atom interferometers in space and ambitio
Kaniadakis and Quarati (1994) proposed a Fokker--Planck equation with quadratic drift as a PDE model for the dynamics of bosons in the spatially homogeneous setting. It is an open question whether this equation has solutions exhibiting condensates in
For a system of identical Bose particles sitting on integer energy levels, we give sharp estimates for the convergence of the sequence of occupation numbers to the Bose-Einstein distribution and for the Bose condensation effect.
To investigate the phenomenon of Bose-Einstein condensation in perfect crystals a hierarchy of equations for reduced density matrices that describes a thermodynamically equilibrium quantum system is employed, the hierarchy being obtained earlier by t