ترغب بنشر مسار تعليمي؟ اضغط هنا

Homogeneous affine surfaces: affine Killing vector fields and Gradient Ricci solitons

257   0   0.0 ( 0 )
 نشر من قبل Miguel Brozos-V\\'azquez
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The homogeneous affine surfaces have been classified by Opozda. They may be grouped into 3 families, which are not disjoint. The connections which arise as the Levi-Civita connection of a surface with a metric of constant Gauss curvature form one family; there are, however, two other families. For a surface in one of these other two families, we examine the Lie algebra of affine Killing vector fields and we give a complete classification of the homogeneous affine gradient Ricci solitons. The rank of the Ricci tensor plays a central role in our analysis.

قيم البحث

اقرأ أيضاً

157 - P. B. Gilkey , J. H. Park , 2018
An affine manifold is said to be geodesically complete if all affine geodesics extend for all time. It is said to be affine Killing complete if the integral curves for any affine Killing vector field extend for all time. We use the solution space of the quasi-Einstein equation to examine these concepts in the setting of homogeneous affine surfaces.
We analyze the moduli space of non-flat homogeneous affine connections on surfaces. For Type $mathcal{A}$ surfaces, we write down complete sets of invariants that determine the local isomorphism type depending on the rank of the Ricci tensor and exam ine the structure of the associated moduli space. For Type $mathcal{B}$ surfaces which are not Type $mathcal{A}$ we show the corresponding moduli space is a simply connected real analytic 4-dimensional manifold with second Betti number equal to $1$.
A Ricci soliton $(M^n,g,v,lambda)$ on a Riemannian manifold $(M^n,g)$ is said to have concurrent potential field if its potential field $v$ is a concurrent vector field. In the first part of this paper we completely classify Ricci solitons with con current potential fields. In the second part we derive a necessary and sufficient condition for a submanifold to be a Ricci soliton in a Riemannian manifold equipped with a concurrent vector field. In the last part, we classify shrinking Ricci solitons with $lambda=1$ on Euclidean hypersurfaces. Several applications of our results are also presented.
We give a new short self-contained proof of the result of Opozda [B. Opozda, A classification of locally homogeneous connections on 2-dimensional manifolds, Differential Geom. Appl. 21 (2004), 173-198.] classifying the locally homogeneous torsion fre e affine surfaces and the extension to the case of surfaces with torsion due to Arias-Marco and Kowalski [T. Arias-Marco and O. Kowalski, Classification of locally homogeneous linear connections with arbitrary torsion on 2-dimensional manifolds, Monatsh. Math. 153 (2008), 1-18.]. Our approach rests on a direct analysis of the affine Killing equations and is quite different than the approaches taken previously in the literature.
We describe the structure of the Ricci tensor on a locally homogeneous Lorentzian gradient Ricci soliton. In the non-steady case, we show the soliton is rigid in dimensions three and four. In the steady case, we give a complete classification in dimension three.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا