ﻻ يوجد ملخص باللغة العربية
We report the effects of electron doping on the crystal structure and electrical resistivity of LaOBiS$_{2-x}$F$_x$ (0.05 $leq$ $x$ $leq$ 0.2). The $ab$ plane is found to be relatively insensitive to the amount of F, whereas the $c$ axis shrinks continuously with increasing $x$, suggesting that the doped F atoms substitute selectively into the apical sites in the BiS$_2$ layer. At $x$ = 0.10, as the temperature is decreased from room temperature, the electrical resistivity is temperature-independent from room temperature to 285 K, increases linearly with decreasing temperature from 285 K to 205 K and then shows obvious insulating behavior below 205 K, which may be due to strong spin-orbit coupling. LaOBiS$_{1.9}$F$_{0.1}$ shows the significantly weak and temperature-independent diamagnetism without any evident anomalies caused by a phase transition.
We report an electrical transport study in Ca$_{2-x}$Sr$_{x}$RuO$_4$ single crystals at high magnetic fields ($B$). For $x =0.2$, the Hall constant $R_{xy}$ decreases sharply at an anisotropic metamagnetic (MM) transition reaching its value for Sr$_2
Here we report the observation of Fermi surface (FS) pockets via the Shubnikov de Haas effect in Na$_x$CoO$_2$ for $x = 0.71$ and 0.84, respectively. Our observations indicate that the FS expected for each compound intersects their corresponding Bril
In order to investigate physical properties around a ferromagnetic (FM) quantum transition point and a tricritical point (TCP) in the itinerant-electron metamagnetic compound UCoAl, we have performed the $^{59}$Co nuclear quadrupole resonance (NQR) m
Remarkably, doping isovalent $d^{10}$ and $d^0$ cations onto the $B$ site in $A_2B$$B$O$_6$ double perovskites has the power to direct the magnetic interactions between magnetic $B$ cations. This is due to changes in orbital hybridization, which favo
We report the temperature and magnetic field dependence of transport properties in epitaxial films of the manganite La$_{1-x}$Ca$_{x}$MnO$_{3}$ in the overdoped region of the phase diagram for $x > 0.5$, where a charge--ordered (CO) and an antiferrom