ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-color ghost interference with photon pairs generated in hot atoms

70   0   0.0 ( 0 )
 نشر من قبل Dongsheng Ding
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an experimental observation of a two-photon ghost interference experiment. A distinguishing feature of our experiment is that the photons are generated via a non-degenerated spontaneous four-wave mixing process in a hot atomic ensemble; therefore the photon has narrow bandwidth. Besides, there is a large difference in frequency between two photons in a pair. Our works may be important to achieve more secure, large transmission capacity long-distance quantum communication.

قيم البحث

اقرأ أيضاً

Recently demonstrated ghost interference using correlated photons of different frequencies, has been theoretically analyzed. The calculation predicts an interesting nonlocal effect: the fringe width of the ghost interference depends not only on the w ave-length of the photon involved, but also on the wavelength of the other photon with which it is entangled. This feature, arising because of different frequencies of the entangled photons, was hidden in the original ghost interference experiment. This prediction can be experimentally tested in a slightly modified version of the experiment.
Two-photon interference of multimode two-photon pairs produced by an optical parametric oscillator has been observed for the first time with an unbalanced interferometer. The time correlation between the multimode two photons has a multi-peaked struc ture. This property of the multimode two-photon state induces two-photon interference depending on delay time. The nonclassicality of this interference is also discussed.
We report measurements of two-photon interference using a cw-pumped type-II spontaneous parametric down-conversion source based on a multimode perodically poled potassium titanyl phosphate waveguide. We have used the recently demonstrated technique o f controlling the spatial characteristics of the down-conversion process via intermodal dispersion to generate photon pairs in fundamental transverse modes, thus ensuring their spatial indistinguishability. Good spatial overlap of photon modes within pairs has been verified using the Hong-Ou-Mandel interferometer and the preparation of polarization entanglement in the Shih-Alley configuration, yielding visibilities consistently above 90%.
We collect the fluorescence from two trapped atomic ions, and measure quantum interference between photons emitted from the ions. The interference of two photons is a crucial component of schemes to entangle atomic qubits based on a photonic coupling . The ability to preserve the generated entanglement and to repeat the experiment with the same ions is necessary to implement entangling quantum gates between atomic qubits, and allows the implementation of protocols to efficiently scale to larger numbers of atomic qubits.
In classical optics, Youngs double-slit experiment with colored coherent light gives rise to individual interference fringes for each light frequency, referring to single-photon interference. However, two-photon double-slit interference has been wide ly studied only for wavelength-degenerate biphoton, known as subwavelength quantum lithography. In this work, we report double-slit interference experiments with two-color biphoton. Different from the degenerate case, the experimental results depend on the measurement methods. From a two-axis coincidence measurement pattern we can extract complete interference information about two colors. The conceptual model provides an intuitional picture of the in-phase and out-of-phase photon correlations and a complete quantum understanding about the which-path information of two colored photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا