ترغب بنشر مسار تعليمي؟ اضغط هنا

Piezomagnetic effect as a counterpart of negative thermal expansion in magnetically frustrated Mn-based antiperovskite nitrides

192   0   0.0 ( 0 )
 نشر من قبل Jan Zemen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Electric-field control of magnetization promises to substantially enhance the energy efficiency of device applications ranging from data storage to solid-state cooling. However, the intrinsic linear magnetoelectric effect is typically small in bulk materials. In thin films electric-field tuning of spin-orbit interaction phenomena (e.g., magnetocrystalline anisotropy) has been reported to achieve a partial control of the magnetic state. Here we explore the piezomagnetic effect (PME), driven by frustrated exchange interactions, which can induce a net magnetization in an antiferromagnet and reverse its direction via elastic strain generated piezoelectrically. Our $ab~initio$ study of PME in Mn-antiperovskite nitrides identified an extraordinarily large PME in Mn$_3$SnN available at room temperature. We explain the magnitude of PME based on features of the electronic structure and show an inverse-proportionality between the simulated zero-temperature PME and the negative thermal expansion at the magnetic (Neel) transition measured by Takenaka et al. in 9 antiferromagnetic Mn$_3$AN systems.



قيم البحث

اقرأ أيضاً

The anomalous Nernst effect (ANE) - the generation of a transverse electric voltage by a longitudinal heat current in conducting ferromagnets or antiferromagnets - is an appealing approach for thermoelectric power generation in spin caloritronics. Th e ANE in antiferromagnets is particularly convenient for the fabrication of highly efficient and densely integrated thermopiles as lateral configurations of thermoelectric modules increase the coverage of heat source without suffering from the stray fields that are intrinsic to ferromagnets. In this work, using first-principles calculations together with a group theory analysis, we systematically investigate the spin order-dependent ANE in noncollinear antiferromagnetic Mn-based antiperovskite nitrides Mn$_{3}X$N ($X$ = Ga, Zn, Ag, and Ni). The ANE in Mn$_{3}X$N is forbidden by symmetry in the R1 phase but amounts to its maximum value in the R3 phase. Among all Mn$_{3}X$N compounds, Mn$_{3}$NiN presents the most significant anomalous Nernst conductivity of 1.80 AK$^{-1}$m$^{-1}$ at 200 K, which can be further enhanced if strain, electric, or magnetic fields are applied. The ANE in Mn$_{3}$NiN, being one order of magnitude larger than that in the famous Mn$_{3}$Sn, is the largest one discovered in antiferromagnets so far. The giant ANE in Mn$_{3}$NiN originates from the sharp slope of the anomalous Hall conductivity at the Fermi energy, which can be understood well from the Mott relation. Our findings provide a novel host material for realizing antiferromagnetic spin caloritronics which promises exciting applications in energy conversion and information processing.
We model changes of magnetic ordering in Mn-antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a non-collinear spin-polarised density functional theory to compare the response of the geometrically fr ustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn$_3$AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn$_3$GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilised by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first order transition) and a large adiabatic temperature change (due to the second order transition).
ABX3 perovskites have attracted intensive research interest in recent years due to their versatile composition and superior optoelectronic properties. Their counterparts, antiperovskites (X3BA), can be viewed as electronically inverted perovskite der ivatives, but they have not been extensively studied for solar applications. Therefore, understanding their composition-property relationships is crucial for future photovoltaic application. Here, taking six antiperovskite nitrides X3NA (X2+ = Mg, Ca, Sr; A3- = P, As, Sb, Bi) as an example, we investigate the effect of X- and A-sites on the electronic, dielectric, and mechanical properties from the viewpoint of the first-principles calculations. Our calculation results show that the X-site dominates the conduction band, and the A-site has a non-negligible contribution to the band edge. These findings are completely different from traditional halide perovskites. Interestingly, when changing X- or A-site elements, a linear relationship between the tolerance factor and physical quantities, such as electronic parameters, dielectric constants, and Youngs modulus, is observed. By designing the Mg3NAs1-xBix alloys, we further verify this power of the linear relationship, which provides a predictive guidance for experimental preparation of antiperovskite alloys. Finally, we make a comprehensive comparison between the antiperovskite nitrides and conventional halide perovskites for pointing out the future device applications.
The thermal expansion at constant pressure of solid CD$_4$ III is calculated for the low temperature region where only the rotational tunneling modes are essential and the effect of phonons and librons can be neglected. It is found that in mK region there is a giant peak of the negative thermal expansion. The height of this peak is comparable or even exceeds the thermal expansion of solid N$_2$, CO, O$_2$ or CH$_4$ in their triple points. It is shown that like in the case of light methane, the effect of pressure is quite unusual: as evidenced from the pressure dependence of the thermodynamic Gr{u}neisen parameter (which is negative and large in the absolute value), solid CD$_4$ becomes increasingly quantum with rising pressure.
57 - S. J. May , A. J. Blattner , 2004
The magnetotransport properties of an In0.95Mn0.05As thin film grown by metal-organic vapor phase epitaxy were measured. Resistivity was measured over the temperature range of 5 to 300 K. The resistivity decreased with increasing temperature from 90 ohm-cm to 0.05 ohm-cm. The field dependence of the low temperature magnetoresistance was measured. A negative magnetoresistance was observed below 17 K with a hysteresis in the magnetoresistance observed at 5 K. The magnetoresistance as a function of applied field was described by the Khosla-Fischer model for spin scattering of carriers in an impurity band.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا