ترغب بنشر مسار تعليمي؟ اضغط هنا

Suspending test masses in terrestrial millihertz gravitational-wave detectors: a case study with a magnetic assisted torsion pendulum

181   0   0.0 ( 0 )
 نشر من قبل Eric Thrane
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Current terrestrial gravitational-wave detectors operate at frequencies above 10 Hz. There is strong astrophysical motivation to construct low-frequency gravitational-wave detectors capable of observing 10 mHz - 10Hz signals. While space-based detectors provide one means of achieving this end, one may also consider terretrial detectors. However, there are numerous technological challenges. In particular, it is difficult to isolate test masses so that they are both seismically isolated and freely falling under the influence of gravity at millihertz frequencies. We investigate the challenges of low-frequency suspension in a hypothetical terrestrial detector. As a case study, we consider a Magnetically Assisted Gravitational-wave Pendulum Intorsion (MAGPI) suspension design. We construct a noise budget to estimate some of the required specifications. In doing so, we identify what are likely to be a number of generic limiting noise sources for terrestrial millihertz gravitational-wave suspension systems (as well as some peculiar to the MAGPI design). We highlight significant experimental challenges in order to argue that the development of millihertz suspensions will be a daunting task. Any system that relies on magnets faces even greater challenges. Entirely mechanical designs such as Zollner pendulums may provide the best path forward.



قيم البحث

اقرأ أيضاً

Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from m assive astrophysical sources. Here we examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the 0.1 -- 10,Hz band. We describe the plethora of potential astrophysical sources in this band and make estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be extremely challenging to overcome.
Achieving the low frequency LISA sensitivity requires that the test masses acting as the interferometer end mirrors are free-falling with an unprecedented small degree of deviation. Magnetic disturbances, originating in the interaction of the test ma ss with the environmental magnetic field, can significantly deteriorate the LISA performance and can be parameterized through the test mass remnant dipole moment $vec{m}_r$ and the magnetic susceptibility $chi$. While the LISA test flight precursor LTP will investigate these effects during the preliminary phases of the mission, the very stringent requirements on the test mass magnetic cleanliness make ground-based characterization of its magnetic proprieties paramount. We propose a torsion pendulum technique to accurately measure on ground the magnetic proprieties of the LISA/LTP test masses.
Cryogenic cooling of the test masses of interferometric gravitational wave detectors is a promising way to reduce thermal noise. However, cryogenic cooling limits the incident power to the test masses, which limits the freedom of shaping the quantum noise. Cryogenic cooling also requires short and thick suspension fibers to extract heat, which could result in the worsening of thermal noise. Therefore, careful tuning of multiple parameters is necessary in designing the sensitivity of cryogenic gravitational wave detectors. Here, we propose the use of particle swarm optimization to optimize the parameters of these detectors. We apply it for designing the sensitivity of the KAGRA detector, and show that binary neutron star inspiral range can be improved by 10%, just by retuning seven parameters of existing components. We also show that the sky localization of GW170817-like binaries can be further improved by a factor of 1.6 averaged across the sky. Our results show that particle swarm optimization is useful for designing future gravitational wave detectors with higher dimensionality in the parameter space.
Shapiro time delay is one of the fundamental tests of general relativity and post-Newtonian theories of gravity. Consequently, its measurements can be used to probe the parameter $gamma$ which is related to spacetime curvature produced by a unit mass in the post-Newtonian formalism of gravity. To date all measurements of time delay have been conducted on astronomical scales. It was asserted in 2010 that gravitational wave detectors on Earth could be used to measure Shapiro delay on a terrestrial scale via massive rotating systems. Building on that work, we consider how measurements of Shapiro delay can be made using next-generation gravitational wave detectors. We perform an analysis for measuring Shapiro delay with the next-generation gravitational wave detectors Cosmic Explorer and Einstein Telescope to determine how precisely the effect can be measured. Using a rotating mass unit design, we find that Cosmic Explorer and Einstein Telescope can measure the Shapiro delay signal with amplitude signal to noise ratios upwards of $sim28 $ and $sim43$ in 1 year of integration time, respectively. By measuring Shapiro delay with this technique, next-generation interferometers will allow for terrestrial measurements of $gamma$ in the paramaterized post-Newtonian formalism of gravity with sub-percent precision.
The binary neutron star coalescence GW170817 was observed by gravitational wave detectors during the inspiral phase but sensitivity in the 1-5 kHz band was insufficient to observe the expected nuclear matter signature of the merger itself, and the pr ocess of black hole formation. This provides strong motivation for improving 1--5 kHz sensitivity which is currently limited by photon shot noise. Resonant enhancement by signal recycling normally improves the signal to noise ratio at the expense of bandwidth. The concept of optomechanical white light signal recycling (WLSR) has been proposed, but all schemes to date have been reliant on the development of suitable ultra-low mechanical loss components. Here for the first time we show demonstrated optomechanical resonator structures that meet the loss requirements for a WLSR interferometer with strain sensitivity below 10$^{-24}$ Hz$^{-1/2}$ at a few kHz. Experimental data for two resonators are combined with analytic models of 4km interferometers similar to LIGO, to demonstrate sensitivity enhancement across a much broader band of neutron star coalescence frequencies than dual-recycled Fabry-Perot Michelson detectors of the same length. One candidate resonator is a silicon nitride membrane acoustically isolated from the environment by a phononic crystal. The other is a single-crystal quartz lens that supports bulk acoustic longitudinal waves. Optical power requirements could prefer the membrane resonator, although the bulk acoustic wave resonator gives somewhat better thermal noise performance. Both could be implemented as add-on components to existing detectors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا