ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of nucleonic Fermi surface depletion in neutron star cooling

113   0   0.0 ( 0 )
 نشر من قبل Jianmin Dong
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Fermi surface depletion of beta-stable nuclear matter is calculated to study its effects on several physical properties which determine the neutron star thermal evolution. The neutron and proton Z factors measuring the corresponding Fermi surface depletions, are calculated within the Brueckner-Hartree-Fock approach employing the AV18 two-body force supplemented by a microscopic three body force. Neutrino emissivity, heat capacity and, in particular, neutron 3PF2 superfluidity turn out to be reduced, especially at high baryonic density, to such an extent that the cooling rates of young neutron stars are significantly slowed

قيم البحث

اقرأ أيضاً

69 - J. M. Dong 2021
The nucleon-nucleon correlation between nucleons leads to the Fermi surface depletion measured by a $Z$-factor in momentum distribution of dense nuclear matter. The roles of the Fermi surface depletion effect ($Z$-factor effect) and its quenched neut ron triplet superfluidity of nuclear matter in viscosity and hence in the gravitational-wave-driven $r$-mode instability of neutron stars (NSs) are investigated. The bulk viscosity is reduced by both the two effects, especially the superfluid effect at low temperatures which is also able to reduce the inferred core temperature of NSs. Intriguingly, due to the neutron superfluidity, the core temperature of the NSs in known low-mass X-ray binaries (LMXBs) are found to be clearly divided into two groups: high and low temperatures which correspond to NSs with short and long recurrence times for nuclear-powered bursts respectively. Yet, a large number of NSs in these LMXBs are still located in the $r$-mode instability region. If the density-dependent symmetry energy is stiff enough, the occurence of direct Urca process reduces the inferred core temperature by about one order of magnitude. Accordingly, the contradiction between the predictions and observations is alleviated to some extent, but some NSs are still located inside the unstable region.
We study the cooling of isolated neutron stars with particular regard to the importance of nuclear pairing gaps. A microscopic nuclear equation of state derived in the Brueckner-Hartree-Fock approach is used together with compatible neutron and proto n pairing gaps. We then study the effect of modifying the gaps on the final deduced neutron star mass distributions. We find that a consistent description of all current cooling data can be achieved and a reasonable neutron star mass distribution can be predicted employing the (slightly reduced by about 40%) proton 1S0 Bardeen-Cooper-Schrieffer (BCS) gaps and no neutron 3P2 pairing.
124 - D. Blaschke 2011
We demonstrate that the high-quality cooling data observed for the young neutron star in the supernova remnant Cassiopeia A over the past 10 years--as well as all other reliably known temperature data of neutron stars--can be comfortably explained wi thin the nuclear medium cooling scenario. The cooling rates of this scenario account for medium-modified one-pion exchange in dense matter and polarization effects in the pair-breaking formations of superfluid neutrons and protons. Crucial for the successful description of the observed data is a substantial reduction of the thermal conductivity, resulting from a suppression of both the electron and nucleon contributions to it by medium effects. We also find that possibly in as little as about ten years of continued observation, the data may tell whether or not fast cooling processes are active in this neutron star.
The short-range and tensor components of the bare nucleon-nucleon interaction induce a sizeable depletion of low momenta in the ground state of a nuclear many-body system. The self-consistent Greens function method within the ladder approximation pro vides an textit{ab-initio} description of correlated nuclear systems that accounts properly for these effects. The momentum distribution predicted by this approach is analyzed in detail, with emphasis on the depletion of the lowest momentum state. The temperature, density, and nucleon asymmetry (isospin) dependence of the depletion of the Fermi sea is clarified. A connection is established between the momentum distribution and the time-ordered components of the self-energy, which allows for an improved interpretation of the results. The dependence on the underlying nucleon-nucleon interaction provides quantitative estimates of the importance of short-range and tensor correlations in nuclear systems.
The interpretation of observations of cooling neutron star crusts in quasi-persistent X-ray transients is affected by predictions of the strength of neutrino cooling via crust Urca processes. The strength of crust Urca neutrino cooling depends sensit ively on the electron-capture and $beta$-decay ground-state to ground-state transition strengths of neutron-rich rare isotopes. Nuclei with mass number $A=61$ are predicted to be among the most abundant in accreted crusts, and the last remaining experimentally undetermined ground-state to ground-state transition strength was the $beta$-decay of $^{61}$V. This work reports the first experimental determination of this transition strength, a ground-state branching of 8.1$^{+2.2}_{-2.0} %$, corresponding to a log $ft$ value of 5.5$^{+0.2}_{-0.2}$. This result was achieved through the measurement of the $beta$-delayed $gamma$ rays using the total absorption spectrometer SuN and the measurement of the $beta$-delayed neutron branch using the neutron long counter system NERO at the National Superconducting Cyclotron Laboratory at Michigan State University. This method helps to mitigate the impact of the Pandemonium effect in extremely neutron-rich nuclei on experimental results. The result implies that $A=61$ nuclei do not provide the strongest cooling in accreted neutron star crusts as expected by some predictions, but that their cooling is still larger compared to most other mass numbers. Only nuclei with mass numbers 31, 33, and 55 are predicted to be cooling more strongly. However, the theoretical predictions for the transition strengths of these nuclei are not consistently accurate enough to draw conclusions on crust cooling. With the experimental approach developed in this work all relevant transitions are within reach to be studied in the future.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا