ترغب بنشر مسار تعليمي؟ اضغط هنا

Flips in Edge-Labelled Pseudo-Triangulations

100   0   0.0 ( 0 )
 نشر من قبل Sander Verdonschot
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that $O(n^2)$ exchanging flips suffice to transform any edge-labelled pointed pseudo-triangulation into any other with the same set of labels. By using insertion, deletion and exchanging flips, we can transform any edge-labelled pseudo-triangulation into any other with $O(n log c + h log h)$ flips, where $c$ is the number of convex layers and $h$ is the number of points on the convex hull.

قيم البحث

اقرأ أيضاً

Delaunay flip is an elegant, simple tool to convert a triangulation of a point set to its Delaunay triangulation. The technique has been researched extensively for full dimensional triangulations of point sets. However, an important case of triangula tions which are not full dimensional is surface triangulations in three dimensions. In this paper we address the question of converting a surface triangulation to a subcomplex of the Delaunay triangulation with edge flips. We show that the surface triangulations which closely approximate a smooth surface with uniform density can be transformed to a Delaunay triangulation with a simple edge flip algorithm. The condition on uniformity becomes less stringent with increasing density of the triangulation. If the condition is dropped completely, the flip algorithm still terminates although the output surface triangulation becomes almost Delaunay instead of exactly Delaunay.
163 - Sander Verdonschot 2015
In this thesis, we study two different graph problems. The first problem revolves around geometric spanners. Here, we have a set of points in the plane and we want to connect them with straight line segments, such that there is a path between each pair of points that does not make a large detour. If we achieve this, the resulting graph is called a spanner. We focus our attention on $Theta$-graphs, which are constructed by connecting each point with its nearest neighbour in a fixed number of cones. Although this construction is very straight-forward, it has proven challenging to fully determine the properties of the resulting graphs. We show that if the construction uses 5 cones, the resulting graphs are still spanners. This was the only number of cones for which this question remained unanswered. We also present a routing strategy on the half-$Theta_6$-graph, a variant of the graph with 6 cones. We show that our routing strategy finds a path whose length is at most a constant factor from the straight-line distance between the endpoints. Moreover, we show that this routing strategy is optimal. In the second part, we turn our attention to flips in triangulations. A flip is a simple operation that transforms one triangulation into another. It turns out that with enough flips, we can transform any triangulation into any other. But how many flips is enough? We present an improved upper bound of $5.2n - 33.6$ on the maximum flip distance between any pair of triangulations with n vertices. Along the way, we prove matching lower bounds on each step in the current algorithm, including a tight bound of $(3n - 9)/5$ flips needed to make a triangulation 4-connected. In addition, we prove tight $Theta(n log n)$ bounds on the number of flips required in several settings where the edges have unique labels.
We introduce a parametrized notion of genericity for Delaunay triangulations which, in particular, implies that the Delaunay simplices of $delta$-generic point sets are thick. Equipped with this notion, we study the stability of Delaunay triangulatio ns under perturbations of the metric and of the vertex positions. We quantify the magnitude of the perturbations under which the Delaunay triangulation remains unchanged.
Delaunay has shown that the Delaunay complex of a finite set of points $P$ of Euclidean space $mathbb{R}^m$ triangulates the convex hull of $P$, provided that $P$ satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be de fined for arbitrary Riemannian manifolds. However, Delaunays genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on $P$ are required. A natural one is to assume that $P$ is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.
A key result in computational 3-manifold topology is that any two triangulations of the same 3-manifold are connected by a finite sequence of bistellar flips, also known as Pachner moves. One limitation of this result is that little is known about th e structure of this sequences; knowing more about the structure could help both proofs and algorithms. Motivated by this, we show that there must be a sequence that satisfies a rigid property that we call semi-monotonicity. We also study this result empirically: we implement an algorithm to find such semi-monotonic sequences, and compare their characteristics to less structured sequences, in order to better understand the practical and theoretical utility of this result.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا