ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence

101   0   0.0 ( 0 )
 نشر من قبل Kathleen McCreary
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Monolayer WS2 offers great promise for use in optical devices due to its direct bandgap and high photoluminescence intensity. While fundamental investigations can be performed on exfoliated material, large-area and high quality materials are essential for implementation of technological applications. In this work, we synthesize monolayer WS2 under various controlled conditions and characterize the films using photoluminescence, Raman and x-ray photoelectron spectroscopies. We demonstrate that the introduction of hydrogen to the argon carrier gas dramatically improves the optical quality and increases the growth area of WS2, resulting in films exhibiting mm2 coverage. The addition of hydrogen more effectively reduces the WO3 precursor and protects against oxidative etching of the synthesized monolayers. The stoichiometric WS2 monolayers synthesized using Ar+H2 carrier gas exhibit superior optical characteristics, with photoluminescence emission full width half maximum values below 40 meV and emission intensities nearly an order of magnitude higher than films synthesized in a pure Ar environment.

قيم البحث

اقرأ أيضاً

The monolayer transition metal dichalcogenides have recently attracted much attention owing to their potential in valleytronics, flexible and low-power electronics and optoelectronic devices. Recent reports have demonstrated the growth of large-size 2-dimensional MoS2 layers by the sulfurization of molybdenum oxides. However, the growth of transition metal selenide monolayer has still been a challenge. Here we report that the introduction of hydrogen in the reaction chamber helps to activate the selenization of WO3, where large-size WSe2 monolayer flakes or thin films can be successfully grown.
The transition-metal dichalcogenides (TMD) MoS2 and WS2 show remarkable electromechanical properties. Strain modifies the direct band gap into an indirect one, and substantial strain even induces an semiconductor-metal transition. Providing strain th rough mechanical contacts is difficult for TMD monolayers, but state-of-the-art for TMD nanotubes. We show using density-functional theory that similar electromechanical properties as in monolayer and bulk TMDs are found for large diameter TMD single- (SWNT) and multi-walled nanotubes (MWNTs). The semiconductor-metal transition occurs at elongations of 16 %. We show that Raman spectroscopy is an excellent tool to determine the strain of the nanotubes and hence monitor the progress of that nanoelectromechanical experiment in situ. TMD MWNTs show twice the electric conductance compared to SWNTs, and each wall of the MWNTs contributes to the conductance proportional to its diameter.
The synthesis of transition metal dichalcogenides (TMDs) has been a primary focus for 2D nanomaterial research over the last 10 years, however, only a small fraction of this research has been concentrated on transition metal ditellurides. In particul ar, nanoscale platinum ditelluride (PtTe2) has rarely been investigated, despite its potential applications in catalysis, photonics and spintronics. Of the reports published, the majority examine mechanically-exfoliated flakes from chemical vapor transport (CVT) grown crystals. While this production method is ideal for fundamental studies, it is very resource intensive therefore rendering this process unsuitable for large scale applications. In this report, the synthesis of thin films of PtTe2 through the reaction of solid-phase precursor films is described. This offers a production method for large-area, thickness-controlled PtTe2, suitable for a range of applications. These polycrystalline PtTe2 films were grown at temperatures as low as 450 degC, significantly below the typical temperatures used in the CVT synthesis methods. To investigate their potential applicability, these films were examined as electrocatalysts for the hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR). The films showed promising catalytic behavior, however, the PtTe2 was found to undergo chemical transformation to a substoichiometric chalcogenide compound under ORR conditions. This study shows while PtTe2 is stable and highly useful for HER, this property does not apply to ORR, which undergoes a fundamentally different mechanism. This study broadens our knowledge of the electrocatalysis of TMDs.
We report on preparation dependent properties observed in monolayer WS2 samples synthesized via chemical vapor deposition (CVD) on a variety of common substrates (Si/SiO2, sapphire, fused silica) as well as samples that were transferred from the grow th substrate onto a new substrate. The as-grown CVD materials (as-WS2) exhibit distinctly different optical properties than transferred WS2 (x-WS2). In the case of CVD growth on Si/SiO2, following transfer to fresh Si/SiO2 there is a ~50 meV shift of the ground state exciton to higher emission energy in both photoluminescence emission and optical reflection. This shift is indicative of a reduction in tensile strain by ~0.25%. Additionally, the excitonic state in x-WS2 is easily modulated between neutral and charged exciton by exposure to moderate laser power, while such optical control is absent in as-WS2 for all growth substrates investigated. Finally, we observe dramatically different laser power-dependent behavior for as-grown and transferred WS2. These results demonstrate a strong sensitivity to sample preparation that is important for both a fundamental understanding of these novel materials as well as reliable reproduction of device properties.
Rhombohedral-stacked few-layer graphene (FLG) has been receiving an ever-increasing attention owing to its peculiar electronic properties that could lead to enticing phenomena such as superconductivity and magnetic ordering. Up to now, experimental s tudies on such material have been mainly limited by the difficulty in isolating it in thickness exceeding 3 atomic layers with device-compatible size. In this work, rhombohedral graphene with thickness up to 9 layers and areas up to ~50 micrometers square is grown via chemical vapor deposition (CVD) on suspended Cu foils and transferred onto target substrates via etch-free delamination. The domains of rhombohedral FLG are identified by Raman spectroscopy and are found to alternate with domains of Bernal-stacked FLG within the same crystal in a stripe-like configuration. A combined analysis of micro-Raman mapping, atomic force microscopy and optical microscopy indicates that the formation of rhombohedral-stacked FLG is strongly correlated to the copper substrate morphology. Cu step bunching results in bending of FLG and interlayer displacement along preferential crystallographic orientations, as determined experimentally by electron microscopy, thus inducing the stripe-like domains. The growth and transfer of rhombohedral FLG with the reported thickness and size shall facilitate the observation of predicted unconventional physics and ultimately add to its technological relevance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا