ترغب بنشر مسار تعليمي؟ اضغط هنا

Pion in the Medium with a Light-Front Model

138   0   0.0 ( 0 )
 نشر من قبل Joao Pacheco B. C. de Melo Dr.
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The pion properties in symmetric nuclear matter are investigated with the Quark-Meson Coupling (QMC) Model plus the light-front constituent quark model~(LFCQM). The LFCQM has been quite successful in describing the properties of pseudoscalar mesons in vacuum, such as the electromagnetic elastic form factors, electromagnetic radii, and decay constants. We study the pion properties in symmetric nuclear matter with the in-medium input recalculated through the QMC model, which provides the in-medium modification of the LFCQM.



قيم البحث

اقرأ أيضاً

Pion valence distributions in nuclear medium and vacuum are studied in a light-front constituent quark model. The in-medium input for studying the pion properties is calculated by the quark-meson coupling model. We find that the in-medium pion valenc e distribution, as well as the in-medium pion valence wave function, are substantially modified at normal nuclear matter density, due to the reduction in the pion decay constant.
362 - Ho-Meoyng Choi 2020
We explore the link between the chiral symmetry of QCD and the numerical results of the light-front quark model, analyzing both the two-point and three-point functions of the pion. Including the axial-vector coupling as well as the pseudoscalar coupl ing in the light-front quark model, we discuss the implication of the chiral anomaly in describing the pion decay constant, the pion-photon transition form factor and the electromagnetic form factor of the pion. In constraining the model parameters, we find that the chiral anomaly plays a critical role and the analysis of $F_{pigamma}(Q^2)$ in timelike region is important. Our results indicate that the constituent quark picture is effective for the low and high $Q^2$ ranges implementing the quark mass evolution effect as $Q^2$ grows.
The structure of the pion wave function in the relativistic constituent quark model is investigated in the explicitly covariant formulation of light-front dynamics. We calculate the two relativistic components of the pion wave function in a simple on e-gluon exchange model and investigate various physical observables: decay constant, charge radius, electromagnetic and transition form factors. We discuss the influence of the full relativistic structure of the pion wave function for an overall good description of all these observables, including both low and high momentum scales.
Properties of r{ho}-meson in symmetric nuclear matter are investigated within a light-front constituent quark model (LFCQM), using the in-medium input calculated by the quark-meson coupling (QMC) model. The LFCQM used here was previously applied in v acuum to calculate the r{ho}-meson electromagnetic properties, namely, charge G 0 , magnetic G 1 , and quadrupole G 2 form factors, as well as the electromagnetic radius and decay constant. We predict the in-medium modifications of the r{ho}-meson electromagnetic form factors in symmetric nuclear matter.
The pion structure in Minkowski space is described in terms of an analytic model of the Bethe-Salpeter amplitude combined with Euclidean Lattice QCD results for the running quark mass. In the present work, a pion model previously proposed, which allo ws for a Nakanishi integral representation, is studied in order to verify the sensitivity of the pion electromagnetic form factor to small variations of the quark self-energy. In addition, we extend the previous work, providing the Nakanishi integral representation for the invariants associated with a decomposition of the pion Bethe-Salpeter amplitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا