ﻻ يوجد ملخص باللغة العربية
Let $P$ denote a 3-uniform hypergraph consisting of 7 vertices $a,b,c,d,e,f,g$ and 3 edges ${a,b,c}, {c,d,e},$ and ${e,f,g}$. It is known that the $r$-color Ramsey number for $P$ is $R(P;r)=r+6$ for $rle 9$. The proof of this result relies on a careful analysis of the Turan numbers for $P$. In this paper, we refine this analysis further and compute the fifth order Turan number for $P$, for all $n$. Using this number for $n=16$, we confirm the formula $R(P;10)=16$.
Given a hypergraph $H$, the size-Ramsey number $hat{r}_2(H)$ is the smallest integer $m$ such that there exists a graph $G$ with $m$ edges with the property that in any colouring of the edges of $G$ with two colours there is a monochromatic copy of $
The Turan number of a graph H, ex(n,H), is the maximum number of edges in a graph on n vertices which does not have H as a subgraph. Let P_k be the path with k vertices, the square P^2_k of P_k is obtained by joining the pairs of vertices with distan
The Turan number of a graph $H$, denoted by $text{ex}(n, H)$, is the maximum number of edges in an $n$-vertex graph that does not have $H$ as a subgraph. Let $TP_k$ be the triangular pyramid of $k$-layers. In this paper, we determine that $text{ex}(n
The Turan number of a graph $H$, denoted by $ex(n,H)$, is the maximum number of edges in any graph on $n$ vertices which does not contain $H$ as a subgraph. Let $P_{k}$ denote the path on $k$ vertices and let $mP_{k}$ denote $m$ disjoint copies of $P
Let $F$ be a graph. The planar Turan number of $F$, denoted by $text{ex}_{mathcal{P}}(n,F)$, is the maximum number of edges in an $n$-vertex planar graph containing no copy of $F$ as a subgraph. Let $Theta_k$ denote the family of Theta graphs on $kge