ترغب بنشر مسار تعليمي؟ اضغط هنا

Path to AWAKE: Evolution of the concept

104   0   0.0 ( 0 )
 نشر من قبل Konstantin Lotov V.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This report describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability --- a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of the AWAKE design and construction status as presented in this conference is given in [1].

قيم البحث

اقرأ أيضاً

61 - K.V.Lotov 2017
Two tests are described that were developed for benchmarking and comparison of numerical codes in the context of AWAKE experiment.
88 - P. Muggli , E. Adli , R. Apsimon 2017
AWAKE is a proton-driven plasma wakefield acceleration experiment. % We show that the experimental setup briefly described here is ready for systematic study of the seeded self-modulation of the 400,GeV proton bunch in the 10,m-long rubidium plasma w ith density adjustable from 1 to 10$times10^{14}$,cm$^{-3}$. % We show that the short laser pulse used for ionization of the rubidium vapor propagates all the way along the column, suggesting full ionization of the vapor. % We show that ionization occurs along the proton bunch, at the laser time and that the plasma that follows affects the proton bunch. %
The spectrum of relativistic electron bunches with large energy dispersion is hardly obtainable with conventional magnetic spectrometers. We present a novel spectroscopic concept, based on the analysis of the photons generated by Thomson Scattering of a probe laser pulse inpinging with arbitrary incidence angle onto the electron bunch. The feasibility of a single-pulse spectrometer, using an energy-calibrated CCD device as detector, is investigated. Numerical simulations performed in conditions typical of a real experiment show the effectiveness and accuracy of the new method.
In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structu res. Potential LPA applications include compact radiation sources and high energy linear colliders. We propose and study plasma wave excitation by an incoherent combination of a large number of low energy laser pulses (i.e., without constraining the pulse phases). We show that, in spite of the incoherent nature of electromagnetic fields within the volume occupied by the pulses, the excited wakefield is regular and its amplitude is comparable or equal to that obtained using a single, coherent pulse with the same energy. These results provide a path to the next generation of LPA-based applications, where incoherently combined multiple pulses may enable high repetition rate, high average power LPAs.
74 - A. Sahai , M. Golkowski 2020
TeV/m acceleration gradients using crystals as originally envisioned by R. Hofstadter, an early pioneer of HEP, have remained unrealizable. Fundamental obstacles that have hampered efforts on particle acceleration using bulk-crystals arise from colli sional energy loss and emittance degradation in addition to severe beam disruption despite the favorable effect of particle channeling along interatomic planes in bulk. We aspire for the union of nanoscience with accelerator science to not only overcome these problems using nanostructured tubes to avoid direct impact of the beam on bulk ion-lattice but also to utilize the highly tunable characteristics of nanomaterials. We pioneer a novel surface wave mechanism in nanostructured materials with a strong electrostatic component which not only attains tens of TeV/m gradients but also has focusing fields. Under our initiative, the proof-of-principle demonstration of tens of TeV/m gradients and beam nanomodulation is underway. Realizable nanostructure accelerators naturally promise new horizons in HEP as well as in a wide range of areas of research that utilize beams of high-energy particles or photons.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا