ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatiotemporal chaos induces extreme events in an extended microcavity laser

127   0   0.0 ( 0 )
 نشر من قبل Sylvain Barbay
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف F Selmi




اسأل ChatGPT حول البحث

Extreme events such as rogue wave in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme events appearance in a spatially extended semiconductor microcavity laser with intracavity saturable absorber. This system can display deterministic irregular dynamics only thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor.



قيم البحث

اقرأ أيضاً

236 - H.Asano , H.Nakao 2005
Two types of spatiotemporal chaos exhibited by ensembles of coupled nonlinear oscillators are analyzed using independent component analysis (ICA). For diffusively coupled complex Ginzburg-Landau oscillators that exhibit smooth amplitude patterns, ICA extracts localized one-humped basis vectors that reflect the characteristic hole structures of the system, and for nonlocally coupled complex Ginzburg-Landau oscillators with fractal amplitude patterns, ICA extracts localized basis vectors with characteristic gap structures. Statistics of the decomposed signals also provide insight into the complex dynamics of the spatiotemporal chaos.
We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. S ystems of a very different nature such as coupled-map lattices and the (continuous-time) Lorenz `96 model exhibit the same features in quantitative and qualitative terms. Additionally we propose a minimal stochastic model that reproduces the results for chaotic systems. Our work supports the claims about universality of our earlier results [I. G. Szendro et al., Phys. Rev. E 76, 025202(R) (2007)] for a specific coupled-map lattice.
The chaotic nature of a storage-ring Free Electron Laser (FEL) is investigated. The derivation of a low embedding dimension for the dynamics allows the low-dimensionality of this complex system to be observed, whereas its unpredictability is demonstr ated, in some ranges of parameters, by a positive Lyapounov exponent. The route to chaos is then explored by tuning a single control parameter, and a period-doubling cascade is evidenced, as well as intermittence.
We study the dynamics of a ring of patches with vegetation-prey-predator populations, coupled through interactions of the Lotka-Volterra type. We find that the system yields aperiodic, recurrent and rare explosive bursts of predator density in a few isolated spatial patches from time to time. Further, the collective predator biomass also exhibits sudden uncorrelated occurrences of large deviations as the coupled system evolves. The maximum value of the predator population in a patch, as well as the maximum value of the predator biomass, increases with coupling strength. These trends are further corroborated by fits to Generalized Extreme Value distributions, where the location and scale factor of the distribution increases markedly with coupling strength, indicating the crucial role of coupling interactions in the generation of extreme events. These results indicate how occurrences of extremely large predator populations can emerge in coupled population dynamics, and in a more general context they suggest a generic class of deterministic nonlinear systems that can naturally exhibit extreme events.
We investigate the spatiotemporal dynamics of a lattice of coupled chaotic maps whose coupling connections are dynamically rewired to random sites with probability p, namely at any instance of time, with probability p a regular link is switched to a random one. In a range of weak coupling, where spatiotemporal chaos exists for regular lattices (i.e. for p = 0), we find that p > 0 yields synchronized periodic orbits. Further we observe that this regularity occurs over a window of p values, beyond which the basin of attraction of the synchronized cycle shrinks to zero. Thus we have evidence of an optimal range of randomness in coupling connections, where spatiotemporal regularity is efficiently obtained. This is in contrast to the commonly observed monotonic increase of synchronization with increasing p, as seen for instance, in the strong coupling regime of the very same system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا