ﻻ يوجد ملخص باللغة العربية
A new method of cooling positronium down is proposed to realize Bose-Einstein condensation of positronium. We perform detail studies about three processes (1) thermalization processes between positronium and silica walls of a cavity, (2) Ps-Ps scatterings and (3) Laser cooling. The thermalization process is shown to be not sufficient for BEC. Ps-Ps collision is also shown to make a big effect on the cooling performance. We combine both methods and establish an efficient cooling for BEC. We also propose a new optical laser system for the cooling.
The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Seco
We report the realization of Bose-Einstein condensates of 39K atoms without the aid of an additional atomic coolant. Our route to Bose-Einstein condensation comprises Sub Doppler laser cooling of large atomic clouds with more than 10^10 atoms and eva
Bose-Einstein condensation is a unique phase transition in that it is not driven by inter-particle interactions, but can theoretically occur in an ideal gas, purely as a consequence of quantum statistics. This chapter addresses the question emph{`How
We have observed Bose-Einstein condensation of an atomic gas in the (quasi-)uniform three-dimensional potential of an optical box trap. Condensation is seen in the bimodal momentum distribution and the anisotropic time-of-flight expansion of the cond
Here we describe a weakly interacting Bose gas on a curved manifold, which is embedded in the three-dimensional Euclidean space.~To this end we start by considering a harmonic trap in the normal direction of the manifold, which confines the three-dim