ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic excitations of the charge stripe electrons below half doping in La(2-x)Sr(x)NiO4, x = 0.45 and x = 0.4

54   0   0.0 ( 0 )
 نشر من قبل Paul G. Freeman
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The low energy magnetic excitation spectrum of charge stripe ordered La(2-x)Sr(x)NiO4, x = 0.4 and x = 0.45 samples were studied by neutron scattering. Two excitation modes are observed in both materials, one from the ordered magnetic moments, and a second mode consistent with pseudo-one-dimensional antiferromagnetic excitations of the charge stripe electrons (q-1D). The dispersion of the q-1D excitation follows the same relation as in x = 1/3 composition, with even spectral weight in the two counter-propagating branches of the x = 0.4 sample, however in the $x = 0.45$ sample only one dispersion branch has any measurable spectral weight. The evolution of the q-1D excitations on doping to the checkerboard charge ordered phase is discussed.

قيم البحث

اقرأ أيضاً

The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4) x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive asymmetry in the magnetic excitations above 40 meV was observed for both doping levels, but an additional ferromagnetic mode was observed in x = 0.45 and not in the x = 0.4. We discuss the origin of crossover in the excitation spectrum between x = 0.45 and x = 0.4 with respect to discommensurations in the charge stripe structure.
Stripe order in La{2-x}Sr{x}NiO4 beyond x = 1/3 was studied with neutron scattering technique. At low temperatures, all the samples exhibit hole stripe order. Incommensurability epsilon of the stripe order is approximately linear in the hole concentr ation n_h = x + 2delta up to x = 1/2, where delta denotes the off-stoichiometry of oxygen atoms. The charge and spin ordering temperatures exhibit maxima at n_h = 1/3, and both decrease beyond n_h > 1/3. For 1/3 < n_h < 1/2, the stripe ordering consists of the mixture of the epsilon = 1/3 stripe order and the n_h = 1/2 charge/spin order.
The magnetic correlations within the cuprates have undergone intense scrutiny as part of efforts to understand high temperature superconductivity. We explore the evolution of the magnetic correlations along the nodal direction of the Brillouin zone i n La2-xSrxCuO4, spanning the doping phase diagram from the anti-ferromagnetic Mott insulator at x = 0 to the metallic phase at x = 0.26. Magnetic excitations along this direction are found to be systematically softened and broadened with doping, at a higher rate than the excitations along the anti-nodal direction. This phenomenology is discussed in terms of the nature of the magnetism in the doped cuprates. Survival of the high energy magnetic excitations, even in the overdoped regime, indicates that these excitations are marginal to pairing, while the influence of the low energy excitations remains ambiguous.
Ordering process of stripe order in La{2-x}Sr{x}NiO{4} with x being around 1/3 was investigated by neutron diffraction experiments. When the stripe order is formed at high temperature, incommensurability epsilon of the stripe order has a tendency to show the value close to 1/3 for the samples with x at both sides of 1/3. With decreasing temperature, however, epsilon becomes close to the value determined by the linear relation of epsilon = n_h, where n_h is a hole concentration. This variation of the epsilon strongly affects the character of the stripe order through the change of the carrier densities in stripes and antiferromagnetic domains.
70 - Z. W. Li , Y. Drees , A. Ricci 2016
The single-layer perovskite cobaltates have attracted enormous attention due to the recent observation of hour-glass shaped magnetic excitation spectra which resemble the ones of the famous high-temperature superconducting cuprates. Here, we present an overview of our most recent studies of the spin and charge correlations in floating-zone grown cobaltate single crystals. We find that frustration and a novel kind of electronic and magnetic nano phase separation are intimately connected to the appearance of the hour-glass shaped spin excitation spectra. We also point out the difference between nano phase separation and conventional phase separation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا