ترغب بنشر مسار تعليمي؟ اضغط هنا

Synthetic HI observations of spiral structure in the outer disk in galaxies

101   0   0.0 ( 0 )
 نشر من قبل Sergey Khoperskov
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By means of 3D hydrodynamical simulations, in a separate paper we have discussed the properties of non-axisymmetric density wave trains in the outermost regions of galaxy disks, based on the picture that self-excited global spiral modes in the bright optical stellar disk are accompanied by low-amplitude short trailing wave signals outside corotation; in the gas, such wave trains can penetrate through the outer Lindblad resonance and propagate outwards, forming prominent spiral patterns. In this paper we present the synthetic 21~cm velocity maps expected from simulated models of the outer gaseous disk, focusing on the case when the disk is dominated by a two-armed spiral pattern, but considering also other more complex situations. We discuss some aspects of the spiral pattern in the gaseous periphery of galaxy disks noted in our simulations that might be interesting to compare with specific observed cases.

قيم البحث

اقرأ أيضاً

145 - Gerhardt Meurer 2016
The HI in galaxies often extends past their conventionally defined optical extent. I report results from our team which has been probing low intensity star formation in outer disks using imaging in H-alpha and ultraviolet. Using a sample of hundreds of HI selected galaxies, we confirm that outer disk HII regions and extended UV disks are common. Hence outer disks are not dormant but are dimly forming stars. Although the ultraviolet light in galaxies is more centrally concentrated than the HI, the UV/HI ratio (the Star Formation Efficiency) is nearly constant, with a slight dependency on surface brightness. This result is well accounted for in a model where disks maintain a constant stability parameter Q. This model also accounts for how the ISM and star formation are distributed in the bright parts of galaxies, and how HI appears to trace the distribution of dark matter in galaxy outskirts.
95 - Si-Yue Yu , Luis C. Ho , 2021
We investigate the impact of spiral structure on global star formation using a sample of 2226 nearby bright disk galaxies. Examining the relationship between spiral arms, star formation rate (SFR), and stellar mass, we find that arm strength correlat es well with the variation of SFR as a function of stellar mass. Arms are stronger above the star-forming galaxy main sequence (MS) and weaker below it: arm strength increases with higher $log,({rm SFR}/{rm SFR}_{rm MS})$, where ${rm SFR}_{rm MS}$ is the SFR along the MS. Likewise, stronger arms are associated with higher specific SFR. We confirm this trend using the optical colors of a larger sample of 4378 disk galaxies, whose position on the blue cloud also depends systematically on spiral arm strength. This link is independent of other galaxy structural parameters. For the subset of galaxies with cold gas measurements, arm strength positively correlates with HI and H$_2$ mass fraction, even after removing the mutual dependence on $log,({rm SFR}/{rm SFR}_{rm MS})$, consistent with the notion that spiral arms are maintained by dynamical cooling provided by gas damping. For a given gas fraction, stronger arms lead to higher $log,({rm SFR}/{rm SFR}_{rm MS})$, resulting in a trend of increasing arm strength with shorter gas depletion time. We suggest a physical picture in which the dissipation process provided by gas damping maintains spiral structure, which, in turn, boosts the star formation efficiency of the gas reservoir.
We present HI observations of 68 early-type disk galaxies from the WHISP survey. They have morphological types between S0 and Sab and absolute B-band magnitudes between -14 and -22. These galaxies form the massive, high surface-brightness extreme of the disk galaxy population, few of which have been imaged in HI before. The HI properties of the galaxies in our sample span a large range; the average values of M_HI/L_B and D_HI/D_25 are comparable to the ones found in later-type spirals, but the dispersions around the mean are larger. No significant differences are found between the S0/S0a and the Sa/Sab galaxies. Our early-type disk galaxies follow the same HI mass-diameter relation as later-type spiral galaxies, but their effective HI surface densities are slightly lower than those found in later-type systems. In some galaxies, distinct rings of HI emission coincide with regions of enhanced star formation, even though the average gas densities are far below the threshold of star formation derived by Kennicutt (1989). Apparently, additional mechanisms, as yet unknown, regulate star formation at low surface densities. Many of the galaxies in our sample have lopsided gas morphologies; in most cases this can be linked to recent or ongoing interactions or merger events. Asymmetries are rare in quiescent galaxies. Kinematic lopsidedness is rare, both in interacting and isolated systems. In the appendix, we present an atlas of the HI observations: for all galaxies we show HI surface density maps, global profiles, velocity fields and radial surface density profiles.
119 - A. Bosma 2016
In this short write-up, I will concentrate on a few topics of interest. In the 1970s I found very extended HI disks in galaxies such as NGC 5055 and NGC 2841, out to 2 - 2.5 times the Holmberg radius. Since these galaxies are warped, a tilted ring mo del allows rotation curves to be derived, and evidence for dark matter to be found. The evaluation of the amount of dark matter is hampered by a disk-halo degeneracy, which can possibly be broken by observations of velocity dispersions in both the MgI region and the CaII region.
In this paper we investigate the nature of 27 star cluster candidates, most of them projected towards the Galactic anticentre. We derive fundamental parameters for 20 confirmed clusters, among these 7 are new identifications. Four of the remaining ar e uncertain cases that require deeper photometry to establish their nature, and 4 are probably field fluctuations. In addition, we provide a partial census of the open clusters towards the Galactic anticentre. We also include in this study some interesting objects outside the anticentre region, in the second and third Galactic quadrants, mainly in the Perseus and Outer arms. These clusters confirm the extension of the Outer arm along the third quadrant. We also point out that the embedded cluster FSR 486, at a distance of 7.2 +/- 1.3 kpc from de Sun, is projected on the line of sight of the Local Group irregular dwarf galaxy IC 10. Thus, part of the unusual properties of IC 10 may be explained by a Galactic contamination. We point out the importance of embedded clusters in tracing the spiral structure.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا