ﻻ يوجد ملخص باللغة العربية
We prove general de Finetti type theorems for classical and free independence. The de Finetti type theorems work for all non-easy quantum groups, which generalize a recent work of Banica, Curran and Speicher. We determine maximal distributional symmetries which means the corresponding de Finetti type theorem fails if a sequence of random variables satisfy more symmetry relations other than the maximal one. In addition, we define Boolean quantum semigroups in analogous to the easy quantum groups, by universal conditions on matrix coordinate generators and an orthogonal projection. Then, we show a general de Finetti type theorem for Boolean independence.
We introduce a family of quantum semigroups and their natural coactions on noncommutative polynomials. We present three invariance conditions, associated with these coactions, for the joint distribution of sequences of selfadjoint noncommutative rand
The aim of device-independent quantum key distribution (DIQKD) is to study protocols that allow the generation of a secret shared key between two parties under minimal assumptions on the devices that produce the key. These devices are merely modeled
In 1931 de Finetti proved what is known as his Dutch Book Theorem. This result implies that the finite additivity {it axiom} for the probability of the disjunction of two incompatible events becomes a {it consequence} of de Finettis logic-operational
Let $A$ be a finite subdiagonal algebra in Arvesons sense. Let $H^p(A)$ be the associated noncommutative Hardy spaces, $0<ple8$. We extend to the case of all positive indices most recent results about these spaces, which include notably the Riesz, Sz
For the noncommutative 2-torus, we define and study Fourier transforms arising from representations of states with central supports in the bidual, exhibiting a possibly nontrivial modular structure (i.e. type III representations). We then prove the