ترغب بنشر مسار تعليمي؟ اضغط هنا

Probe light-shift elimination in Generalized Hyper-Ramsey quantum clocks

75   0   0.0 ( 0 )
 نشر من قبل Thomas Zanon-Willette
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new interrogation scheme for the next generation of quantum clocks to suppress frequency-shifts induced by laser probing fields themselves based on Generalized Hyper-Ramsey resonances. Sequences of composite laser pulses with specific selection of phases, frequency detunings and durations are combined to generate a very efficient and robust frequency locking signal with almost a perfect elimination of the light-shift from off resonant states and to decouple the unperturbed frequency measurement from the lasers intensity. The frequency lock point generated from synthesized error signals using either $pi/4$ or $3pi/4$ laser phase-steps during the intermediate pulse is tightly protected against large laser pulse area variations and errors in potentially applied frequency shift compensations. Quantum clocks based on weakly allowed or completely forbidden optical transitions in atoms, ions, molecules and nuclei will benefit from these hyper-stable laser frequency stabilization schemes to reach relative accuracies below the 10$^{-18}$ level.



قيم البحث

اقرأ أيضاً

We experimentally investigate a recently proposed optical excitation scheme [V.I. Yudin et al., Phys. Rev. A 82, 011804(R)(2010)] that is a generalization of Ramseys method of separated oscillatory fields and consists of a sequence of three excitatio n pulses. The pulse sequence is tailored to produce a resonance signal which is immune to the light shift and other shifts of the transition frequency that are correlated with the interaction with the probe field. We investigate the scheme using a single trapped 171Yb+ ion and excite the highly forbidden 2S1/2-2F7/2 electric-octupole transition under conditions where the light shift is much larger than the excitation linewidth, which is in the Hertz range. The experiments demonstrate a suppression of the light shift by four orders of magnitude and an immunity against its fluctuations.
We study a wide range of neutral atoms and ions suitable for ultra-precise atomic optical clocks with naturally suppressed black body radiation shift of clock transition frequency. Calculations show that scalar polarizabilities of clock states cancel each other for at least one order of magnitude for considered systems. Results for calculations of frequencies, quadrupole moments of the states, clock transition amplitudes and natural widths of upper clock states are presented.
Collisions between background gas particles and the trapped ion in an atomic clock can subtly shift the frequency of the clock transition. The uncertainty in the correction for this effect makes a significant contribution to the total systematic unce rtainty budget of trapped-ion clocks. Using a non-perturbative analytic framework that was developed for this problem, we estimate the frequency shift in Al$^+$ ion clocks due to collisions with helium and hydrogen. Our calculations significantly improve the uncertainties in the collisional shift coefficients, and show that the collisional frequency shifts for Al$^+$ are zero to within uncertainty.
Ramsey theory is an active research area in combinatorics whose central theme is the emergence of order in large disordered structures, with Ramsey numbers marking the threshold at which this order first appears. For generalized Ramsey numbers $r(G,H )$, the emergent order is characterized by graphs $G$ and $H$. In this paper we: (i) present a quantum algorithm for computing generalized Ramsey numbers by reformulating the computation as a combinatorial optimization problem which is solved using adiabatic quantum optimization; and (ii) determine the Ramsey numbers $r(mathcal{T}_{m},mathcal{T}_{n})$ for trees of order $m,n = 6,7,8$, most of which were previously unknown.
We develop a model to describe the motional (i.e., external degree of freedom) energy spectra of atoms trapped in a one-dimensional optical lattice, taking into account both axial and radial confinement relative to the lattice axis. Our model respect s the coupling between axial and radial degrees of freedom, as well as other anharmonicities inherent in the confining potential. We further demonstrate how our model can be used to characterize lattice light shifts in optical lattice clocks, including shifts due to higher multipolar (magnetic dipole and electric quadrupole) and higher order (hyperpolarizability) coupling to the lattice field. We compare results for our model with results from other lattice light shift models in the literature under similar conditions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا