ﻻ يوجد ملخص باللغة العربية
Complex nature of finite density QCD with heavy quarks in the strong coupling region is studied. For this purpose, we consider the effective potential as a function of Polyakov line, and study thermodynamic singularities and associated Stokes boundaries in the complex chemical potential plane. We also perform an explicit analytic continuation of the first order transition and crossover lines in the complex chemical potential plane.
The method of analytic continuation is one of the most powerful tools to circumvent the sign problem in lattice QCD. The present study is part of a larger project which, based on the investigation of QCD-like theories which are free of the sign probl
Two-color finite density QCD is free from the sign problem, and it is thus regarded as a good model to check the validity of the analytic continuation method. We study the method in terms of the corresponding chiral random matrix model. It is found t
We extend our previous study of the QCD phase structure in the heavy quark region to non-zero chemical potentials. To identify the critical point where the first order deconfining transition terminates, we study an effective potential defined by the
We determine the equation of state of QCD at finite chemical potential, to order $(mu_B/T)^6$, for a system of 2+1 quark flavors. The simulations are performed at the physical mass for the light and strange quarks on several lattice spacings; the res
We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD sim