ﻻ يوجد ملخص باللغة العربية
The planetary system discovered around the young A-type HR8799 provides a unique laboratory to: a) test planet formation theories, b) probe the diversity of system architectures at these separations, and c) perform comparative (exo)planetology. We present and exploit new near-infrared images and integral-field spectra of the four gas giants surrounding HR8799 obtained with SPHERE, the new planet finder instrument at the Very Large Telescope, during the commissioning and science verification phase of the instrument (July-December 2014). With these new data, we contribute to completing the spectral energy distribution of these bodies in the 1.0-2.5 $mu$m range. We also provide new astrometric data, in particular for planet e, to further constrain the orbits. We used the infrared dual-band imager and spectrograph (IRDIS) subsystem to obtain pupil-stabilized, dual-band $H2H3$ (1.593 $mu$m, 1.667 $mu$m), $K1K2$ (2.110 $mu$m, 2.251 $mu$m), and broadband $J$ (1.245 $mu$m) images of the four planets. IRDIS was operated in parallel with the integral field spectrograph (IFS) of SPHERE to collect low-resolution ($Rsim30$), near-infrared (0.94-1.64 $mu$m) spectra of the two innermost planets HR8799d and e. The data were reduced with dedicated algorithms, such as the Karhunen-Lo`eve image projection (KLIP), to reveal the planets. We used the so-called negative planets injection technique to extract their photometry, spectra, and measure their positions. We illustrate the astrometric performance of SPHERE through sample orbital fits compatible with SPHERE and literature data.
The system of four planets around HR8799 offers a unique opportunity to probe the physics and chemistry at play in the atmospheres of self-luminous young (~30 Myr) planets. We recently obtained new photometry of the four planets and low-resolution (R
GJ758 B is a brown dwarf companion to a nearby (15.76 pc) solar-type, metal-rich (M/H = +0.2 dex) main-sequence star (G9V) that was discovered with Subaru/HiCIAO in 2009. From previous studies, it has drawn attention as being the coldest (~600K) comp
SPHERE is an instrument designed and built by a consortium of French, German, Italian, Swiss and Dutch institutes in collaboration with ESO. The project is currently in its Phase B. The main goal of SPHERE is to gain at least one order of magnitude w
The Gemini Planet Imager (GPI) is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field sp
Context. PDS 70 is a young (5.4 Myr), nearby (~113 pc) star hosting a known transition disk with a large gap. Recent observations with SPHERE and NACO in the near-infrared (NIR) allowed us to detect a planetary mass companion, PDS70b, within the disk