ترغب بنشر مسار تعليمي؟ اضغط هنا

Perpendicular standing spin wave and magnetic anisotropic study on amorphous FeTaC films

64   0   0.0 ( 0 )
 نشر من قبل Biswanath Samantaray Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic anisotropy, spin wave (SW) excitation and exchange stiffness constant of amorphous FeTaC ($d$ = 20-200 nm) films were studied as a function of thickness using micro-strip ferromagnetic resonance (MS-FMR) technique. The MS-FMR spectra for in-plane applied magnetic field show the presence of uniform precessional mode ($n$ = 0) along with first perpendicular standing spin wave (PSSW) mode ($n$ = 1) especially for $d$ = 50, 100 and 200 nm films. The angular ($varphi_{H}$) dependence of resonance field ($H_{r}$) and magnetic field dependence of resonance frequencies ($f_{r}$) in planar configuration for the uniform and PSSW modes were modeled successfully by using dispersion relation which arises from a combination of exchange and dipolar interactions. The relevant parameters such as saturation magnetization ($4pi M_{S}$), uniaxial anisotropic constant ($K_{u}$), $g$-factor, and exchange stiffness constants ($A_{ex}$) are estimated for different FeTaC film thickness. $A_{ex}$ is found to increase from 1.52(4)$times$10$^{-7}$ to 5.0(5)$times$10$^{-6}$ erg/cm as the thickness of film increases from 50 to 200 nm, possibly due to surface pinning effect or significant inhomogeneity especially at higher thickness films.


قيم البحث

اقرأ أيضاً

Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have been widely applied to emerging quantum sensing, imaging, and network efforts, showing unprecedented field sensitivity and nanoscale spatial resolution. Many of these adv antages derive from their excellent quantum-coherence, controllable entanglement, and high fidelity of operations, enabling opportunities to outperform the classical counterpart. Exploiting this cutting-edge quantum metrology, we report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization. The measured field dependence of NV relaxation rates is well correlated to the variation of magnon density and band structure of the magnetic samples, which are challenging to access by the conventional magnetometry methods. Our results highlight the significant opportunities offered by NV centers in diagnosing the noise environment of functional magnetic elements, providing valuable information to design next-generation, high-density, and scalable spintronic devices.
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within an approximation in which the dependence of the magnetoresistance on the magnetization orientation in the ferromagnet originates from the interference between Bychkov-Rashba and Dresselhaus spin-orbit couplings that appear at junction interfaces and in the tunneling region. We also investigate the transport properties of ferromagnet/semiconductor/ferromagnet tunnel junctions and show that in such structures the spin-orbit interaction leads not only to the TAMR effect but also to the anisotropy of the conventional tunneling magnetoresistance (TMR). The resulting anisotropic tunneling magnetoresistance (ATMR) depends on the absolute magnetization directions in the ferromagnets. Within the proposed model, depending on the magnetization directions in the ferromagnets, the interplay of Bychkov-Rashba and Dresselhaus spin-orbit couplings produces differences between the rates of transmitted and reflected spins at the ferromagnet/seminconductor interfaces, which results in an anisotropic local density of states at the Fermi surface and in the TAMR and ATMR effects. Model calculations for Fe/GaAs/Fe tunnel junctions are presented. Furthermore, based on rather general symmetry considerations, we deduce the form of the magnetoresistance dependence on the absolute orientations of the magnetizations in the ferromagnets.
To stabilize the non-trivial spin textures, e.g., skyrmions or chiral domain walls in ultrathin magnetic films, an additional degree of freedom such as the interfacial Dzyaloshinskii-Moriya interaction (IDMI) must be induced by the strong spin-orbit coupling (SOC) of a stacked heavy metal layer. However, advanced approaches to simultaneously control IDMI and perpendicular magnetic anisotropy (PMA) are needed for future spin-orbitronic device implementations. Here, we show an effect of atomic-scale surface modulation on the magnetic properties and IDMI in ultrathin films composed of 5d heavy metal/ferromagnet/4d(5d) heavy metal or oxide interfaces, such as Pt/CoFeSiB/Ru, Pt/CoFeSiB/Ta, and Pt/CoFeSiB/MgO. The maximum IDMI value corresponds to the correlated roughness of the bottom and top interfaces of the ferromagnetic layer. The proposed approach for significant enhancement of PMA and IDMI through the interface roughness engineering at the atomic scale offers a powerful tool for the development of the spin-orbitronic devices with the precise and reliable controllability of their functionality.
Spin-orbit interaction (SOI) couples charge and spin transport, enabling electrical control of magnetization. A quintessential example of SOI-induced transport is the anomalous Hall effect (AHE), first observed in 1880, in which an electric current p erpendicular to the magnetization in a magnetic film generates charge accumulation on the surfaces. Here we report the observation of a counterpart of the AHE that we term the anomalous spin-orbit torque (ASOT), wherein an electric current parallel to the magnetization generates opposite spin-orbit torques on the surfaces of the magnetic film. We interpret the ASOT as due to a spin-Hall-like current generated with an efficiency of 0.053+/-0.003 in Ni80Fe20, comparable to the spin Hall angle of Pt. Similar effects are also observed in other common ferromagnetic metals, including Co, Ni, and Fe. First principles calculations corroborate the order of magnitude of the measured values. This work suggests that a strong spin current with spin polarization transverse to magnetization can exist in a ferromagnet, despite spin dephasing. It challenges the current understanding of spin-orbit torque in magnetic/nonmagnetic bilayers, in which the charge-spin conversion in the magnetic layer has been largely neglected.
The concept of perpendicular shape anisotropy spin-transfer torque magnetic random-access memory (PSA-STT-MRAM) consists in increasing the storage layer thickness to values comparable to the cell diameter, to induce a perpendicular shape anisotropy i n the magnetic storage layer. Making use of that contribution, the downsize scalability of the STT-MRAM may be extended towards sub-20 nm technological nodes, thanks to a reinforcement of the thermal stability factor $Delta$. Although the larger storage layer thickness improves $Delta$, it is expected to negatively impact the writing current and switching time. Hence, optimization of the cell dimensions (diameter, thickness) is of utmost importance for attaining a sufficiently high $Delta$ while keeping a moderate writing current. Micromagnetic simulations were carried out for different pillar thicknesses of fixed lateral size 20 nm. The switching time and the reversal mechanism were analysed as a function of the applied voltage and aspect-ratio (AR) of the storage layer. For AR $<$ 1, the magnetization reversal resembles a macrospin-like mechanism, while for AR $>$ 1 a non-coherent reversal is observed, characterized by the nucleation of a transverse domain wall at the ferromagnet/insulator interface which then propagates along the vertical axis of the pillar. It was further observed that the inverse of the switching time is linearly dependent on the applied voltage. This study was extended to sub-20 nm width with a value of $Delta$ around 80. It was observed that the voltage necessary to reverse the magnetic layer increases as the lateral size is reduced, accompanied with a transition from macrospin-reversal to a buckling-like reversal at high aspect-ratios.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا