ترغب بنشر مسار تعليمي؟ اضغط هنا

Ordered interfaces for dual easy axes in liquid crystals

68   0   0.0 ( 0 )
 نشر من قبل Emmanuelle Lacaze
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Emmanuelle Lacaze




اسأل ChatGPT حول البحث

Using nCB films adsorbed on MoS 2 substrates studied by x-ray diffraction, optical microscopy and Scanning Tunneling Microscopy, we demonstrate that ordered interfaces with well-defined orientations of adsorbed dipoles induce planar anchoring locked along the adsorbed dipoles or the alkyl chains, which play the role of easy axes. For two alternating orientations of the adsorbed dipoles or dipoles and alkyl chains, bi-stability of anchoring can be obtained. The results are explained using the introduction of fourth order terms in the phenomenological anchoring potential, leading to the demonstration of first order anchoring transition in these systems. Using this phenomenological anchoring potential, we finally show how the nature of anchoring in presence of dual easy axes (inducing bi-stability or average orientation between the two easy axes) can be related to the microscopical nature of the interface. Introduction Understanding the interactions between liquid crystal (LC) and a solid substrate is of clear applied interest, the vast majority of LC displays relying on control of interfaces. However this concerns also fundamental problems like wetting phenomena and all phenomena of orientation of soft matter bulk induced by the presence of an interface. In LCs at interfaces, the so-called easy axes correspond to the favoured orientations of the LC director close to the interface. If one easy axis only is defined for one given interface, the bulk director orients along or close to this axis [1]. It is well known that, in anchoring phenomena, two major effects compete to impose the anchoring directions of a liquid crystal, first, the interactions between molecules and the interface, second, the substrate roughness whose role has been analyzed by Berreman [2]. The influence of adsorbed molecular functional groups at the interface is most often dominant with, for example in carbon substrates, a main influence of unsaturated carbon bonds orientation at the interface [3]. In common LC displays, there is one unique easy axis, but modifications of surfaces have allowed for the discovery of promising new anchoring-related properties. For instance, the first anchoring bi-stability has been established on rough surfaces, associated with electric ordo-polarization [4] and the competition between a stabilizing short-range term and a destabilizing long-range term induced by an external field, can induce a continuous variation of anchoring orientation [5]. More recently, surfaces with several easy axes have been studied extensively. It has been shown that control of a continuous variation of director pretilt, obtained in several systems [6, 7], is associated with the presence of two different easy axes, one perpendicular to the substrate (homeotropic) and one planar [7, 8]. Similar models can explain the continuous evolution of anchoring between two planar orientations observed on some crystalline substrates [9]. However, in the same time, two easy axes can also lead to anchoring bi-stability [10, 11] or discontinuous transitions of anchoring [9], which is not compatible with the model established to interpret observed control of pretilt. In order to be able to predict if bi-stability or continuous combination of the two easy axes occurs for one given system, it becomes necessary to understand the microscopic origin of the easy axes.



قيم البحث

اقرأ أيضاً

We review and compare recent work on the properties of fluctuating interfaces between nematic and isotropic liquid-crystalline phases. Molecular dynamics and Monte Carlo simulations have been carried out for systems of ellipsoids and hard rods with a spect ratio 15:1, and the fluctuation spectrum of interface positions (the capillary wave spectrum) has been analyzed. In addition, the capillary wave spectrum has been calculated analytically within the Landau-de Gennes theory. The theory predicts that the interfacial fluctuations can be described in terms of a wave vector dependent interfacial tension, which is anisotropic at small wavelengths (stiff director regime) and becomes isotropic at large wavelengths (flexible director regime). After determining the elastic constants in the nematic phase, theory and simulation can be compared quantitatively. We obtain good agreement for the stiff director regime. The crossover to the flexible director regime is expected at wavelengths of the order of several thousand particle diameters, which was not accessible to our simulations.
We analyse a recent generalised free-energy for liquid crystals posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review some known interesting solutions, i. e., uniform heliconical structures, and we find new liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called Skyrmion tubes. These new configurations are characterised by a localised pattern given by the variation of the conical angle. We study the equilibrium differential equations and find numerical solutions and analytical approximations.
108 - F. Castles , S. M. Morris , 2011
The flexoelectric conversion of mechanical to electrical energy in nematic liquid crystals is investigated using continuum theory. Since the electrical energy produced cannot exceed the mechanical energy supplied, and vice-versa, upper bounds are imp osed on the magnitudes of the flexoelectric coefficients in terms of the elastic and dielectric coefficients. For conventional values of the elastic and dielectric coefficients, it is shown that the flexoelectric coefficients may not be larger than a few tens of pC/m. This has important consequences for the future use of such flexoelectric materials in devices and the related energetics of distorted equilibrium structures.
We analyze the interaction with uniform external fields of nematic liquid crystals within a recent generalized free-energy posited by Virga and falling in the class of quartic functionals in the spatial gradients of the nematic director. We review so me known interesting solutions, i. e., uniform heliconical structures, which correspond to the so-called twist-bend nematic phase and we also study the transition between this phase and the standard uniform nematic one. Moreover, we find liquid crystal configurations, which closely resemble some novel, experimentally detected, structures called Skyrmion Tubes. Skyrmion Tubes are characterized by a localized cylindrically-symmetric pattern surrounded by either twist-bend or uniform nematic phase. We study the equilibrium differential equations and find numerical solutions and analytical approximations.
Starting from a microscopic definition of an alignment vector proportional to the polarization, we discuss the hydrodynamics of polar liquid crystals with local $C_{infty v}$-symmetry. The free energy for polar liquid crystals differs from that of ne matic liquid crystals ($D_{infty h}$) in that it contains terms violating the ${bf{n}}to -{bf{n}}$ symmetry. First we show that these $mathcal{Z}_2$-odd terms induce a general splay instability of a uniform polarized state in a range of parameters. Next we use the general Poisson-bracket formalism to derive the hydrodynamic equations of the system in the polarized state. The structure of the linear hydrodynamic modes confirms the existence of the splay instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا