ترغب بنشر مسار تعليمي؟ اضغط هنا

The island coalescence problem: scaling of reconnection in extended fluid models including higher-order moments

481   0   0.0 ( 0 )
 نشر من قبل Jonathan Ng
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of todays simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Recently, large scale particle-in-cell (PIC) simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here we perform the complementary resistive MHD, Hall MHD and two fluid simulations using a ten-moment model with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.



قيم البحث

اقرأ أيضاً

A number of studies have considered how the rate of magnetic reconnection scales in large and weakly collisional systems by the modelling of long reconnecting current sheets. However, this set-up neglects both the formation of the current sheet and t he coupling between the diffusion region and a larger system that supplies the magnetic flux. Recent studies of magnetic island merging, which naturally include these features, have found that ion kinetic physics is crucial to describe the reconnection rate and global evolution of such systems. In this paper, the effect of a guide field on reconnection during island merging is considered. In contrast to the earlier current sheet studies, we identify a limited range of guide fields for which the reconnection rate, outflow velocity, and pile-up magnetic field increase in magnitude as the guide field increases. The Hall-MHD fluid model is found to reproduce kinetic reconnection rates only for a sufficiently strong guide field, for which ion inertia breaks the frozen-in condition and the outflow becomes Alfvenic in the kinetic system. The merging of large islands occurs on a longer timescale in the zero guide field limit, which may in part be due to a mirror-like instability that occurs upstream of the reconnection region.
Magnetic reconnection (MR) plays a fundamental role in plasma dynamics under many different conditions, from space and astrophysical environments to laboratory devices. High-resolution in-situ measurements from space missions allow to study naturally occurring MR processes in great detail. Alongside direct measurements, numerical simulations play a key role in investigating the fundamental physics underlying MR. The choice of an adequate plasma model to be employed in numerical simulations, while also compromising with their computational cost, is crucial to efficiently address the problem. We consider a new plasma model that includes a refined electron response within the hybrid-kinetic framework (kinetic ions, fluid electrons). The extent to which this new model can reproduce a full-kinetic description of 2D MR, with particular focus on its robustness during the non-linear stage, is evaluated. We perform 2D simulations of MR with moderate guide field by means of three different plasma models: a hybrid-Vlasov-Maxwell model with isotropic, isothermal electrons, a hybrid-Vlasov-Landau-fluid (HVLF) model where an anisotropic electron fluid is equipped with a Landau-fluid closure, and a full-kinetic one. When compared to the full-kinetic case, the HVLF model effectively reproduces the main features of MR, as well as several aspects of the associated electron micro-physics and its feedback onto proton dynamics. This includes the global evolution of MR and the local physics occurring within the so-called electron-diffusion region, as well as the evolution of species pressure anisotropy. In particular, anisotropy driven instabilities (such as firehose, mirror, and cyclotron instabilities) play a relevant role in regulating electrons anisotropy during the non-linear stage of MR. As expected, the HVLF model captures all these features, except for the electron-cyclotron instability.
The reversibility of the transfer of energy from the magnetic field to the surrounding plasma during magnetic reconnection is examined. Trajectories of test particles in an analytic model of the fields demonstrate that irreversibility is associated w ith separatrix crossings and regions of weaker magnetic field. Inclusion of a guide field increases the degree of reversibility. Full kinetic simulations with a particle-in-cell code support these results and demonstrate that while time-reversed simulations at first un-reconnect, they eventually evolve into a reconnecting state.
113 - T. Passot , P.L. Sulem , E. Tassi 2017
Reduced fluid models for collisionless plasmas including electron inertia and finite Larmor radius corrections are derived for scales ranging from the ion to the electron gyroradii. Based either on pressure balance or on the incompressibility of the electron fluid, they respectively capture kinetic Alfven waves (KAWs) or whistler waves (WWs), and can provide suitable tools for reconnection and turbulence studies. Both isothermal regimes and Landau fluid closures permitting anisotropic pressure fluctuations are considered. For small values of the electron beta parameter $beta_e$, a perturbative computation of the gyroviscous force valid at scales comparable to the electron inertial length is performed at order $O(beta_e)$, which requires second-order contributions in a scale expansion. Comparisons with kinetic theory are performed in the linear regime. The spectrum of transverse magnetic fluctuations for strong and weak turbulence energy cascades is also phenomenologically predicted for both types of waves. In the case of moderate ion to electron temperature ratio, a new regime of KAW turbulence at scales smaller than the electron inertial length is obtained, where the magnetic energy spectrum decays like $k_perp^{-13/3}$, thus faster than the $k_perp^{-11/3}$ spectrum of WW turbulence.
We report in situ observations of an electron diffusion region (EDR) and adjacent separatrix region. We observe significant magnetic field oscillations near the lower hybrid frequency which propagate perpendicularly to the reconnection plane. We also find that the strong electron-scale gradients close to the EDR exhibit significant oscillations at a similar frequency. Such oscillations are not expected for a crossing of a steady 2D EDR, and can be explained by a complex motion of the reconnection plane induced by current sheet kinking propagating in the out-of-reconnection-plane direction. Thus all three spatial dimensions have to be taken into account to explain the observed perturbed EDR crossing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا