ﻻ يوجد ملخص باللغة العربية
In this paper, we have investigated $Lambda$CDM type cosmological model in Heckmann-Schucking space-time, by using 287 high red shift ($ .3 leq z leq 1.4$ ) SN Ia data of observed absolute magnitude along with their possible error from Union 2.1 compilation. We have used $chi^{2}$ test to compare Union 2.1 compilation observed data and corresponding theoretical values of apparent magnitude $(m)$. It is found that the best fit value for $(Omega_{m})_0$, $(Omega_{Lambda})_0$ and $(Omega_{sigma})_0$ are $0.2940$, $0.7058$ and $0.0002$ respectively and the derived model represents the features of accelerating universe which is consistent with recent astrophysical observations.
In the present work we have searched the existence of the late time acceleration of the universe with string fluid as source of matter in anisotropic Heckmann-Suchking space-time by using 287 high red shift $(0.3 leq zleq 1.4)$ SN Ia data of observed
The recent robust and homogeneous analysis of the worlds supernova distance-redshift data, together with cosmic microwave background and baryon acoustic oscillation data, provides a powerful tool for constraining cosmological models. Here we examine
We present an explicit detailed theoretical and observational investigation of an anisotropic massive Brans-Dicke (BD) gravity extension of the standard $Lambda$CDM model, wherein the extension is characterized by two additional degrees of freedom; t
We show that a cosmology driven by gravitationally induced particle production of all non-relativistic species existing in the present Universe mimics exactly the observed flat accelerating $Lambda$CDM cosmology with just one dynamical free parameter
This paper treats nonrelativistic matter and a scalar field $phi$ with a monotonically decreasing potential minimally coupled to gravity in flat Friedmann-Lema^{i}tre-Robertson-Walker cosmology. The field equations are reformulated as a three-dimensi