ترغب بنشر مسار تعليمي؟ اضغط هنا

Young Dipper Stars in Upper Sco and $rho$ Oph Observed by K2

70   0   0.0 ( 0 )
 نشر من قبل Megan Ansdell
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present ten young ($lesssim$10 Myr) late-K and M dwarf stars observed in K2 Campaign 2 that host protoplanetary disks and exhibit quasi-periodic or aperiodic dimming events. Their optical light curves show $sim$10-20 dips in flux over the 80-day observing campaign with durations of $sim$0.5-2 days and depths of up to $sim$40%. These stars are all members of the $rho$ Ophiuchus ($sim$1 Myr) or Upper Scorpius ($sim$10 Myr) star-forming regions. To investigate the nature of these dippers we obtained: optical and near-infrared spectra to determine stellar properties and identify accretion signatures; adaptive optics imaging to search for close companions that could cause optical variations and/or influence disk evolution; and millimeter-wavelength observations to constrain disk dust and gas masses. The spectra reveal Li I absorption and H$alpha$ emission consistent with stellar youth (<50 Myr), but also accretion rates spanning those of classical and weak-line T Tauri stars. Infrared excesses are consistent with protoplanetary disks extending to within $sim$10 stellar radii in most cases; however, the sub-mm observations imply disk masses that are an order of magnitude below those of typical protoplanetary disks. We find a positive correlation between dip depth and WISE-2 excess, which we interpret as evidence that the dipper phenomenon is related to occulting structures in the inner disk, although this is difficult to reconcile with the weakly accreting aperiodic dippers. We consider three mechanisms to explain the dipper phenomenon: inner disk warps near the co-rotation radius related to accretion; vortices at the inner disk edge produced by the Rossby Wave Instability; and clumps of circumstellar material related to planetesimal formation.

قيم البحث

اقرأ أيضاً

79 - Claire L Davies 2019
The discovery of close in, giant planets (hot Jupiters) with orbital angular momentum vectors misaligned with respect to the rotation axis of their host stars presents problems for planet formation theories in which planets form in discs with angular momentum vectors aligned with that of the star. Violent, high eccentricity migration mechanisms purported to elevate planetary orbits above the natal disc plane predict populations of proto-hot Jupiters which have not been observed with Kepler. Alternative theories invoking primordial star-disc misalignments have recently received more attention. Here, the relative alignment between stars and their protoplanetary discs is assessed for the first time for a sample of 20 pre-main-sequence stars. Recently published rotation periods derived from high quality, long duration, high cadence K2 light curves for members of the $rho$ Ophiuchus and Upper Scorpius star forming regions are matched with high angular resolution observations of spatially resolved discs and projected rotational velocities to determine stellar rotation axis inclination angles which are then compared to the disc inclinations. Ten of the fifteen systems for which the stellar inclination could be estimated are consistent with star-disc alignment while five systems indicate potential misalignments between the star and its disc. The potential for chance misalignment of aligned systems due to projection effects and characteristic measurement uncertainties is also investigated. While the observed frequency of apparent star-disc misalignments could be reproduced by a simulated test population in which 100% of systems are truly aligned, the distribution of the scale of inferred misalignment angles could not.
We present 29 likely members of the young $rho$ Oph or Upper Sco regions of recent star formation that exhibit accretion burst type light curves in $K2$ time series photometry. The bursters were identified by visual examination of their ~80 day light curves, though all satisfy the $M < -0.25$ flux asymmetry criterion for burst behavior defined by Cody et al. (2014). The burst sources represent $approx$9% of cluster members with strong infrared excess indicative of circumstellar material. Higher amplitude burster behavior is correlated with larger inner disk infrared excesses, as inferred from $WISE$ $W1-W2$ color. The burst sources are also outliers in their large H$alpha$ emission equivalent widths. No distinction between bursters and non-bursters is seen in stellar properties such as multiplicity or spectral type. The frequency of bursters is similar between the younger, more compact $rho$ Oph region, and the older, more dispersed Upper Sco region. The bursts exhibit a range of shapes, amplitudes (~10-700%), durations (~1-10 days), repeat time scales (~3-80 days), and duty cycles (~10-100%). Our results provide important input to models of magnetospheric accretion, in particular by elucidating the properties of accretion-related variability in the low state between major longer duration events such as EX Lup and FU Ori type accretion outbursts. We demonstrate the broad continuum of accretion burst behavior in young stars -- extending the phenomenon to lower amplitudes and shorter timescales than traditionally considered in the theory of pre-main sequence accretion history.
We present the detection and follow-up observations of planetary candidates around low-mass stars observed by the K2 mission. Based on light-curve analysis, adaptive-optics imaging, and optical spectroscopy at low and high resolution (including radia l velocity measurements), we validate 16 planets around 12 low-mass stars observed during K2 campaigns 5-10. Among the 16 planets, 12 are newly validated, with orbital periods ranging from 0.96-33 days. For one of the planets (K2-151b) we present ground-based transit photometry, allowing us to refine the ephemerides. Combining our K2 M-dwarf planets together with the validated or confirmed planets found previously, we investigate the dependence of planet radius $R_p$ on stellar insolation and metallicity [Fe/H]. We confirm that for periods $Plesssim 2$ days, planets with a radius $R_pgtrsim 2,R_oplus$ are less common than planets with a radius between 1-2$,R_oplus$. We also see a hint of the radius valley between 1.5 and 2$,R_oplus$ that has been seen for close-in planets around FGK stars. These features in the radius/period distribution could be attributed to photoevaporation of planetary envelopes by high-energy photons from the host star, as they have for FGK stars. For the M dwarfs, though, the features are not as well defined, and we cannot rule out other explanations such as atmospheric loss from internal planetary heat sources, or truncation of the protoplanetary disk. There also appears to be a relation between planet size and metallicity: those few planets larger than about 3 $R_oplus$ are found around the most metal-rich M dwarfs.
Dippers are a common class of young variable star exhibiting day-long dimmings with depths of up to several tens of percent. A standard explanation is that dippers host nearly edge-on (70 deg) protoplanetary discs that allow close-in (< 1 au) dust li fted slightly out of the midplane to partially occult the star. The identification of a face-on dipper disc and growing evidence of inner disc misalignments brings this scenario into question. Thus we uniformly (re)derive the inclinations of 24 dipper discs resolved with (sub-)mm interferometry from ALMA. We find that dipper disc inclinations are consistent with an isotropic distribution over 0-75 deg, above which the occurrence rate declines (likely an observational selection effect due to optically thick disc midplanes blocking their host stars). These findings indicate that the dipper phenomenon is unrelated to the outer (>10 au) disc resolved by ALMA and that inner disc misalignments may be common during the protoplanetary phase. More than one mechanism may contribute to the dipper phenomenon, including accretion-driven warps and broken discs caused by inclined (sub-)stellar or planetary companions.
We present the discoveries of KELT-25b (TIC 65412605, TOI-626.01) and KELT-26b (TIC 160708862, TOI-1337.01), two transiting companions orbiting relatively bright, early A-stars. The transit signals were initially detected by the KELT survey, and subs equently confirmed by textit{TESS} photometry. KELT-25b is on a 4.40-day orbit around the V = 9.66 star CD-24 5016 ($T_{rm eff} = 8280^{+440}_{-180}$ K, $M_{star}$ = $2.18^{+0.12}_{-0.11}$ $M_{odot}$), while KELT-26b is on a 3.34-day orbit around the V = 9.95 star HD 134004 ($T_{rm eff}$ =$8640^{+500}_{-240}$ K, $M_{star}$ = $1.93^{+0.14}_{-0.16}$ $M_{odot}$), which is likely an Am star. We have confirmed the sub-stellar nature of both companions through detailed characterization of each system using ground-based and textit{TESS} photometry, radial velocity measurements, Doppler Tomography, and high-resolution imaging. For KELT-25, we determine a companion radius of $R_{rm P}$ = $1.64^{+0.039}_{-0.043}$ $R_{rm J}$, and a 3-sigma upper limit on the companions mass of $sim64~M_{rm J}$. For KELT-26b, we infer a planetary mass and radius of $M_{rm P}$ = $1.41^{+0.43}_{-0.51}$ $M_{rm J}$ and $R_{rm P}$ = $1.940^{+0.060}_{-0.058}$ $R_{rm J}$. From Doppler Tomographic observations, we find KELT-26b to reside in a highly misaligned orbit. This conclusion is weakly corroborated by a subtle asymmetry in the transit light curve from the textit{TESS} data. KELT-25b appears to be in a well-aligned, prograde orbit, and the system is likely a member of a cluster or moving group.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا