ﻻ يوجد ملخص باللغة العربية
We show the operation of a Cu/Al_2O_3/Cu/n-Si hot-electron transistor for the straightforward determination of a metal/semiconductor energy barrier height even at temperatures below carrier-freeze out in the semiconductor. The hot-electron spectroscopy measurements return a fairly temperature independent value for the Cu/n-Si barrier of 0.66 $pm$ 0.04 eV at temperatures below 180 K, in substantial accordance with mainstream methods based on complex fittings of either current-voltage (I-V) and capacitance-voltage (C-V) measurements. The Cu/n-Si hot-electron transistors exhibit an OFF current of ~2 * 10^-13 A, an ON/OFF ratio of ~10^5 and an equivalent subtreshold swing of ~96 mV/dec at low temperatures, which are suitable values for potential high frequency devices.
We demonstrate tunable Schottky barrier height and record photo-responsivity in a new-concept device made of a single-layer CVD graphene transferred onto a matrix of nanotips patterned on n-type Si wafer. The original layout, where nano-sized graphen
Bardeens model for the non-ideal metal-semiconductor interface was applied to metal-wrapped cylindrical nanowire systems; a significant effect of the nanowire diameter on the non-ideal Schottky barrier height was found. The calculations were performe
We use electronic transport and atom probe tomography to study ZnO:Al / SiO2 / Si Schottky junctions on lightly-doped n- and p-type Si. We vary the carrier concentration in the the ZnO:Al films by two orders of magnitude but the Schottky barrier heig
Schottky Barrier (SB)-MOSFET technology offers intriguing possibilities for cryogenic nano-scale devices, such as Si quantum devices and superconducting devices. We present experimental results on a novel device architecture where the gate electrode
Schottky barrier field-effect transistors (SBFETs) based on few and mono layer phosphorene are simulated by the non-equilibrium Greens function formalism. It is shown that scaling down the gate oxide thickness results in pronounced ambipolar I-V char