ترغب بنشر مسار تعليمي؟ اضغط هنا

Diffractive imaging of a molecular rotational wavepacket with femtosecond Megaelectronvolt electron pulses

81   0   0.0 ( 0 )
 نشر من قبل Jie Yang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, since the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. We performed a gas-phase electron diffraction experiment using Megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved an unprecedented combination of 100 fs root-mean-squared (RMS) temporal resolution and sub-Angstrom (0.76 {AA}) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.



قيم البحث

اقرأ أيضاً

We investigate the dynamics of molecular photoexcitation by unchirped femtosecond laser pulses using RbCs as a model system. This study is motivated by a goal of optimizing a two-color scheme of transferring vibrationally-excited ultracold molecules to their absolute ground state. In this scheme the molecules are initially produced by photoassociation or magnetoassociation in bound vibrational levels close to the first dissociation threshold. We analyze here the first step of the two-color path as a function of pulse intensity from the low-field to the high-field regime. We use two different approaches, a global one, the Wavepacket method, and a restricted one, the Level by Level method where the number of vibrational levels is limited to a small subset. The comparison between the results of the two approaches allows one to gain qualitative insights into the complex dynamics of the high-field regime. In particular, we emphasize the non-trivial and important role of far-from-resonance levels which are adiabatically excited through vertical transitions with a large Franck-Condon factor. We also point out spectacular excitation blockade due to the presence of a quasi-degenerate level in the lower electronic state. We conclude that selective transfer with femtosecond pulses is possible in the low-field regime only. Finally, we extend our single-pulse analysis and examine population transfer induced by coherent trains of low-intensity femtosecond pulses.
We give a detailed account of the theoretical analysis and the experimental results of an x-ray-diffraction experiment on quantum-state selected and strongly laser-aligned gas-phase ensembles of the prototypical large asymmetric rotor molecule 2,5-di iodobenzonitrile, performed at the Linac Coherent Light Source [Phys. Rev. Lett. 112, 083002 (2014)]. This experiment is the first step toward coherent diffractive imaging of structures and structural dynamics of isolated molecules at atomic resolution, i. e., picometers and femtoseconds, using x-ray free-electron lasers.
398 - Michel Peters 2012
We explore the laser-induced ionization dynamics of N2 and CO2 molecules subjected to a few-cycle, linearly polarized, 800,nm laser pulse using effective two-dimensional single active electron time-dependent quantum simulations. We show that the elec tron recollision process taking place after an initial tunnel ionization stage results in quantum interference patterns in the energy resolved photo-electron signals. If the molecule is initially aligned perpendicular to the field polarization, the position and relative heights of the associated fringes can be related to the molecular geometrical and orbital structure, using a simple inversion algorithm which takes into account the symmetry of the initial molecular orbital from which the ionized electron is produced. We show that it is possible to extract inter-atomic distances in the molecule from an averaged photon-electron signal with an accuracy of a few percents.
We analyze the photoelectron angular distribution in two-pathway interference between non-resonant one-photon and resonant two-photon ionization of neon. We consider a bichromatic femtosecond XUV pulse whose fundamental frequency is tuned near the $2 p^5 3s$ atomic states of neon. The time-dependent Schrodinger equation is solved and the results are employed to compute the angular distribution and the associated anisotropy parameters at the main photoelectron line. We also employ a time-dependent perturbative approach, which allows obtaining information on the process for a large range of pulse parameters, including the steady-state case of continuous radiation, i.e., an infinitely long pulse. The results from the two methods are in relatively good agreement over the domain of applicability of perturbation theory.
602 - R. Boll , A. Rouzee , M. Adolph 2014
This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray Free-Electron Laser. We present results of two exper iments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C8H5F) and dissociating, laseraligned 1,4-dibromobenzene (C6H4Br2) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا