ﻻ يوجد ملخص باللغة العربية
In this paper, motivated by a problem arising in random homogenization theory, we initiate the study of uniform estimates for the fractional penalized obstacle problem, $ Delta^{s}u^{epsilon} = beta_{epsilon} (u^{epsilon})$. In particular we consider the penalized boundary obstacle problem, $s = frac{1}{2}$, and obtain sharp estimates for the solution independent of the penalizing parameter $epsilon$. This is a generalization of a result due to H. Brezis and D. Kinderlehrer.
In this paper we are concerned with a two-penalty boundary obstacle problem of interest in thermics, fluid dynamics and electricity. Specifically, we prove existence, uniqueness and optimal regularity of the solutions, and we establish structural properties of the free boundary.
The parabolic obstacle problem for the fractional Laplacian naturally arises in American option models when the assets prices are driven by pure jump Levy processes. In this paper we study the regularity of the free boundary. Our main result establis
We prove a higher regularity result for the free boundary in the obstacle problem for the fractional Laplacian via a higher order boundary Harnack inequality.
We study the regularity of the free boundary in the obstacle for the $p$-Laplacian, $minbigl{-Delta_p u,,u-varphibigr}=0$ in $Omegasubsetmathbb R^n$. Here, $Delta_p u=textrm{div}bigl(| abla u|^{p-2} abla ubigr)$, and $pin(1,2)cup(2,infty)$. Near th
In this paper we give a full classification of global solutions of the obstacle problem for the fractional Laplacian (including the thin obstacle problem) with compact coincidence set and at most polynomial growth in dimension $N geq 3$. We do this i