ﻻ يوجد ملخص باللغة العربية
We consider a geometrically frustrated spin-1/2 Ising-Heisenberg diamond chain, which is an exactly solvable model when assuming part of the exchange interactions as Heisenberg ones and another part as Ising ones. A small $XY$ part is afterwards perturbatively added to the Ising couplings, which enabled us to derive an effective Hamiltonian describing the low-energy behavior of the modified but full quantum version of the initial model. The effective model is much simpler and free of frustration. It is shown that the $XY$ part added to the originally Ising interaction gives rise to the spin-liquid phase with continuously varying magnetization, which emerges in between the magnetization plateaus and is totally absent in the initial hybrid diamond-chain model. The elaborated approach can also be applied to other hybrid Ising-Heisenberg spin systems.
Thermal entanglement, magnetic and quadrupole moments properties of the mixed spin-1/2 and spin-1 Ising-Heisenberg model on a diamond chain are considered. Magnetization and quadrupole moment plateaus are observed for the antiferromagnetic couplings.
The mixed spin-(1,1/2) Ising-Heisenberg model on a distorted diamond chain with the spin-1 nodal atoms and the spin-1/2 interstitial atoms is exactly solved by the transfer-matrix method. An influence of the geometric spin frustration and the paralle
We show that the RKKY interaction in the two-impurity Anderson model comprise two contributions: a ferromagnetic part stemming from the symmetrized hybridization functions and an anti-ferromagnetic part. We demonstrate that this anti-ferromagnetic co
We report a combined analytical and density matrix renormalized group study of the antiferromagnetic XXZ spin-1/2 Heisenberg chain subject to a uniform Dzyaloshinskii-Moriya (DM) interaction and a transverse magnetic field. The numerically determined
The recently introduced topological quantum chemistry (TQC) framework has provided a description of universal topological properties of all possible band insulators in all space groups based on crystalline unitary symmetries and time reversal. While