ﻻ يوجد ملخص باللغة العربية
In cloud computing systems, assigning a job to multiple servers and waiting for the earliest copy to finish is an effective method to combat the variability in response time of individual servers. Although adding redundant replicas always reduces service time, the total computing time spent per job may be higher, thus increasing waiting time in queue. The total time spent per job is also proportional to the cost of computing resources. We analyze how different redundancy strategies, for eg. number of replicas, and the time when they are issued and canceled, affect the latency and computing cost. We get the insight that the log-concavity of the service time distribution is a key factor in determining whether adding redundancy reduces latency and cost. If the service distribution is log-convex, then adding maximum redundancy reduces both latency and cost. And if it is log-concave, then having fewer replicas and canceling the redundant requests early is more effective.
In cloud computing systems, assigning a task to multiple servers and waiting for the earliest copy to finish is an effective method to combat the variability in response time of individual servers, and reduce latency. But adding redundancy may result
Master-worker distributed computing systems use task replication in order to mitigate the effect of slow workers, known as stragglers. Tasks are grouped into batches and assigned to one or more workers for execution. We first consider the case when t
Innovations in Next-Generation Sequencing are enabling generation of DNA sequence data at ever faster rates and at very low cost. Large sequencing centers typically employ hundreds of such systems. Such high-throughput and low-cost generation of data
As numerous machine learning and other algorithms increase in complexity and data requirements, distributed computing becomes necessary to satisfy the growing computational and storage demands, because it enables parallel execution of smaller tasks t
In cloud storage systems with a large number of servers, files are typically not stored in single servers. Instead, they are split, replicated (to ensure reliability in case of server malfunction) and stored in different servers. We analyze the mean