ﻻ يوجد ملخص باللغة العربية
Model-space effective interactions $V_{eff}$ derived from free-space nucleon-nucleon interactions $V_{NN}$ are reviewed. We employ a double decimation approach: first we extract a low-momentum interaction $V_{low-k}$ from $V_{NN}$ using a $T$-matrix equivalence decimation method. Then $V_{eff}$ is obtained from $V_{low-k}$ by way of a folded-diagram effective interaction method. For decimation momentum $Lambda simeq 2 fm^{-1}$, the $V_{low-k}$ interactions derived from different realistic $V_{NN}$ models are nearly model independent, and so are the resulting shell-model effective interactions. For nucleons in a low-density nuclear medium like valence nucleons near the nuclear surface, such effective interactions derived from free-space $V_{NN}$ are satisfactory in reproducing experimental nuclear properties. But it is not so for nucleons in a nuclear medium with density near or beyond nuclear matter saturation density. In this case it may be necessary to include the effects from Brown-Rho (BR) scaling of hadrons and/or three-nucleon forces $V_{3N}$, effectively changing the free-space $V_{NN}$ into a density-dependent one. The density-dependent effects from BR scaling and $V_{3N}$ are compared with those from empirical Skyrme effective interactions.
Chiral symmetry allows two and three nucleon forces to be treated in a single theoretical framework. We discuss two new features of this research programme at $cO(q^4)$ and the consistency of the overall chiral picture.
Equivalent interactions in a low-momentum space for the $Lambda N$, $Sigma N$ and $Xi N$ interactions are calculated, using the SU$_6$ quark model potential as well as the Nijmegen OBEP model as the input bare interaction. Because the two-body scatte
Background: Modern ab initio theory combined with high-quality nucleon-nucleon (NN) and three-nucleon (3N) interactions from chiral effective field theory (EFT) can provide a predictive description of low-energy light-nuclei reactions relevant for as
We have studied the low lying magnetic spectra of 12C, 16O, 40Ca, 48Ca and 208Pb nuclei within the Random Phase Approximation (RPA) theory, finding that the description of low-lying magnetic states of doubly-closed-shell nuclei imposes severe constra
Hyperon-nucleons interactions constructed by two frameworks, the Kyoto-Niigata SU$_6$ quark model and the chiral effective field theory, are compared by investigating equivalent interactions in a low-momentum space and in addition by calculating hype