ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray spectral evolution of V404 Cygni in the initial phase of the 2015 outburst

120   0   0.0 ( 0 )
 نشر من قبل Lorenzo Natalucci Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The black hole binary GS 2023+338 exhibited an unprecedently bright outburst on June 2015. Since June 17th, the high energy instruments on board INTEGRAL detected an extremely variable emission during both bright and low luminosity phases, with dramatic variations of the hardness ratio on time scales of ~seconds. The analysis of the IBIS and SPI data reveals the presence of hard spectra in the brightest phases, compatible with thermal Comptonization with temperature kTe ~ 40 keV. The seed photons temperature is best fit by kT0 ~ 7 keV, that is too high to be compatible with blackbody emission from the disk. This result is consistent with the seed photons being provided by a different source, that we hypothesize to be a synchrotron driven component in the jet. During the brightest phase of flares, the hardness shows a complex pattern of correlation with flux, with a maximum energy released in the range 40-100 keV. The hard X-ray variability for E > 50 keV is correlated with flux variations in the softer band, showing that the overall source variability cannot originate entirely from absorption, but at least part of it is due to the central accreting source.

قيم البحث

اقرأ أيضاً

The black-hole binary, V404 Cygni, went into outburst in June 2015, after 26 years of X-ray quiescence. We observed the outburst with the Neil Gehrels Swift observatory. We present optical/UV observations taken with the Swift Ultra-violet Optical Tel escope, and compare them with the X-ray observations obtained with the Swift X-ray Telescope. We find that dust extinction affecting the optical/UV, does not correlate with absorption due to neutral hydrogen that affects the X-ray emission. We suggest there is a small inhomogeneous high density absorber containing a negligible amount of dust, close to the black hole. Overall, temporal variations in the optical/UV appear to trace those in the X-rays. During some epochs we observe an optical time-lag of (15 - 35)s. For both the optical/UV and X-rays, the amplitude of the variations correlates with flux, but this correlation is less significant in the optical/UV. The variability in the light curves may be produced by a complex combination of processes. Some of the X-ray variability may be due to the presence of a local, inhomogeneous and dust-free absorber, while variability visible in both the X-ray and optical/UV may instead be driven by the accretion flow: the X-rays are produced in the inner accretion disc, some of which are reprocessed to the optical/UV; and/or the X-ray and optical/UV emission is produced within the jet.
The microquasar V404 Cygni underwent a series of outbursts in 2015, June 15-31, during which its flux in hard X-rays (20-40 keV) reached about 40 times the Crab Nebula flux. Because of the exceptional interest of the flaring activity from this source , observations at several wavelengths were conducted. The MAGIC telescopes, triggered by the INTEGRAL alerts, followed-up the flaring source for several nights during the period June 18-27, for more than 10 hours. One hour of observation was conducted simultaneously to a giant 22 GHz radio flare and a hint of signal at GeV energies seen by Fermi-LAT. The MAGIC observations did not show significant emission in any of the analysed time intervals. The derived flux upper limit, in the energy range 200--1250 GeV, is 4.8$times 10^{-12}$ ph cm$^{-2}$ s$^{-1}$. We estimate the gamma-ray opacity during the flaring period, which along with our non-detection, points to an inefficient acceleration in the V404,Cyg jets if VHE emitter is located further than $1times 10^{10}$ cm from the compact object.
After 25 years of quiescence, the microquasar V404 Cyg entered a new period of activity in June 2015. This X-ray source is known to undergo extremely bright and variable outbursts seen at all wavelengths. It is therefore an object of prime interest t o understand the accretion-ejection connections. These can, however, only be probed through simultaneous observations at several wavelengths. We made use of the INTEGRAL instruments to obtain long, almost uninterrupted observations from 2015 June 20$^{mathrm{th}}$, 15:50 UTC to June 25$^{mathrm{th}}$, 4:05 UTC, from the optical V-band, up to the soft $gamma$-rays. V404 Cyg was extremely variable in all bands, with the detection of 18 flares with fluxes exceeding 6 Crab (20--40 keV) within 3 days. The flare recurrence can be as short as $sim$ 20~min from peak to peak. A model-independent analysis shows that the $>$6 Crab flares have a hard spectrum. A simple 10--400 keV spectral analysis of the off-flare and flare periods shows that the variation in intensity is likely to be due to variations of a cut-off power law component only. The optical flares seem to be at least of two different types: one occurring in simultaneity with the X-ray flares, the other showing a delay greater than 10 min. The former could be associated with X-ray reprocessing by either an accretion disk or the companion star. We suggest that the latter are associated with plasma ejections that have also been seen in radio.
We present a multiwavelength analysis of the simultaneous optical and X-ray light curves of the microquasar V404 Cyg during the June 2015 outburst. We have performed a comprehensive analysis of all the INTEGRAL/IBIS, JEM-X, and OMC observations durin g the brightest epoch of the outburst, along with complementary NuSTAR, AAVSO, and VSNET data, to examine the timing relationship between the simultaneous optical and X-ray light curves, in order to understand the emission mechanisms and physical locations. We have identified all optical flares which have simultaneous X-ray observations, and performed cross-correlation analysis to estimate the time delays between the optical and soft and hard X-ray emission. We have also compared the evolution of the optical and X-ray emission with the hardness-ratios. We have identified several types of behaviour during the outburst. On many occasions, the optical flares occur simultaneously with X-ray flares, but at other times positive and negative time delays between the optical and X-ray emission are measured. We conclude that the observed optical variability is driven by different physical mechanisms, including reprocessing of X-rays in the accretion disc and/or the companion star, interaction of the jet ejections with surrounding material or with previously ejected blobs, and synchrotron emission from the jet.
In June 2015, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission, and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability, and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low energy component (up to ~ 200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons ($kT_0$ ~ 7 keV) is introduced. Above this first component, a clear excess extending up to 400-600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 x $10^{-4} ph/cm^2 s$ (2 sigma) for a narrow line centered at 511 keV, on the averaged obtained spectrum.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا