ترغب بنشر مسار تعليمي؟ اضغط هنا

Realizing the Tactile Internet: Haptic Communications over Next Generation 5G Cellular Networks

101   0   0.0 ( 0 )
 نشر من قبل Adnan Aijaz
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Prior Internet designs encompassed the fixed, mobile and lately the things Internet. In a natural evolution to these, the notion of the Tactile Internet is emerging which allows one to transmit touch and actuation in real-time. With voice and data communications driving the designs of the current Internets, the Tactile Internet will enable haptic communications, which in turn will be a paradigm shift in how skills and labor are digitally delivered globally. Design efforts for both the Tactile Internet and the underlying haptic communications are in its infancy. The aim of this article is thus to review some of the most stringent design challenges, as well as proposing first avenues for specific solutions to enable the Tactile Internet revolution.



قيم البحث

اقرأ أيضاً

106 - Jing Yang , Yi Zhong , Xiaohu Ge 2019
The conventional outage in wireless communication systems is caused by the deterioration of the wireless communication link, i.e., the received signal power is less than the minimum received signal power. Is there a possibility that the outage occurs in wireless communication systems with a good channel state? Based on both communication and heat transfer theories, a power-consumption outage in the wireless communication between millimeter wave (mmWave) massive multiple-input multiple-output (MIMO) base stations (BSs) and smartphones has been modeled and analyzed. Moreover, the total transmission time model with respect to the number of power-consumption outages is derived for mmWave massive MIMO communication systems. Simulation results indicate that the total transmission time is extended by the power-consumption outage, which deteriorates the average transmission rate of mmWave massive MIMO BSs.
371 - Roman Kovalchukov 2021
Massive machine type communications (mMTC) is one of the cornerstone services that have to be supported by 5G systems. 3GPP has already introduced LTE-M and NB-IoT, often referred to as cellular IoT, in 3GPP Releases 13, 14, and 15 and submitted thes e technologies as part of 3GPP IMT-2020 (i.e., 5G) technology submission to ITU-R. Even though NB-IoT and LTE-M have shown to satisfy 5G mMTC requirements defined by ITU-R, it is expected that these cellular IoT solutions will not address all aspects of IoT and ongoing digitalization, including the support for direct communication between things with flexible deployments, different business models, as well as support for even higher node densities and enhanced coverage. In this paper, we introduce the DECT-2020 standard recently published by ETSI for mMTC communications. We evaluate its performance and compare it to the existing LPWAN solutions showing that it outperforms those in terms of supported density of nodes while still keeping delay and loss guarantees at the required level.
Machine-to-machine (M2M) communications have attracted great attention from both academia and industry. In this paper, with recent advances in wireless network virtualization and software-defined networking (SDN), we propose a novel framework for M2M communications in software-defined cellular networks with wireless network virtualization. In the proposed framework, according to different functions and quality of service (QoS) requirements of machine-type communication devices (MTCDs), a hypervisor enables the virtualization of the physical M2M network, which is abstracted and sliced into multiple virtual M2M networks. Moreover, we formulate a decision-theoretic approach to optimize the random access process of M2M communications. In addition, we develop a feedback and control loop to dynamically adjust the number of resource blocks (RBs) that are used in the random access phase in a virtual M2M network by the SDN controller. Extensive simulation results with different system parameters are presented to show the performance of the proposed scheme.
Due to its high mobility and flexible deployment, unmanned aerial vehicle (UAV) is drawing unprecedented interest in both military and civil applications to enable agile wireless communications and provide ubiquitous connectivity. Mainly operating in an open environment, UAV communications can benefit from dominant line-of-sight links; however, it on the other hand renders the UAVs more vulnerable to malicious eavesdropping or jamming attacks. Recently, physical layer security (PLS), which exploits the inherent randomness of the wireless channels for secure communications, has been introduced to UAV systems as an important complement to the conventional cryptography-based approaches. In this paper, a comprehensive survey on the current achievements of the UAV-aided wireless communications is conducted from the PLS perspective. We first introduce the basic concepts of UAV communications including the typical static/mobile deployment scenarios, the unique characteristics of air-to-ground channels, as well as various roles that a UAV may act when PLS is concerned. Then, we introduce the widely used secrecy performance metrics and start by reviewing the secrecy performance analysis and enhancing techniques for statically deployed UAV systems, and extend the discussion to a more general scenario where the UAVs mobility is further exploited. For both cases, respectively, we summarize the commonly adopted methodologies in the corresponding analysis and design, then describe important works in the literature in detail. Finally, potential research directions and challenges are discussed to provide an outlook for future works in the area of UAV-PLS in 5G and beyond networks.
We consider the problem of video caching across a set of 5G small-cell base stations (SBS) connected to each other over a high-capacity short-delay back-haul link, and linked to a remote server over a long-delay connection. Even though the problem of minimizing the overall video delivery delay is NP-hard, the Collaborative Caching Algorithm (CCA) that we present can efficiently compute a solution close to the optimal, where the degree of sub-optimality depends on the worst case video-to-cache size ratio. The algorithm is naturally amenable to distributed implementation that requires zero explicit coordination between the SBSs, and runs in $O(N + K log K)$ time, where $N$ is the number of SBSs (caches) and $K$ the maximum number of videos. We extend CCA to an online setting where the video popularities are not known a priori but are estimated over time through a limited amount of periodic information sharing between SBSs. We demonstrate that our algorithm closely approaches the optimal integral caching solution as the cache size increases. Moreover, via simulations carried out on real video access traces, we show that our algorithm effectively uses the SBS caches to reduce the video delivery delay and conserve the remote servers bandwidth, and that it outperforms two other reference caching methods adapted to our system setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا