ترغب بنشر مسار تعليمي؟ اضغط هنا

Elasto-capillarity Simulations based on the Navier-Stokes-Cahn-Hilliard Equations

99   0   0.0 ( 0 )
 نشر من قبل Harald Van Brummelen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a computational model for complex-fluid-solid interaction based on a diffuse-interface model for the complex fluid and a hyperelastic-material model for the solid. The diffuse-interface complex-fluid model is described by the incompressible Navier-Stokes-Cahn-Hilliard equations with preferential-wetting boundary conditions at the fluid-solid interface. The corresponding fluid traction on the interface includes a capillary-stress contribution, and the dynamic interface condition comprises the traction exerted by the non-uniform fluid-solid surface tension. We present a weak formulation of the aggregated complex-fluid-solid-interaction problem, based on an Arbitrary-Lagrangian-Eulerian formulation of the Navier-Stokes-Cahn-Hilliard equations and a proper reformulation of the complex-fluid traction and the fluid-solid surface tension. To validate the presented complex-fluid-solid-interaction model, we present numerical results and conduct a comparison to experimental data for a droplet on a soft substrate.



قيم البحث

اقرأ أيضاً

We present a projection-based framework for solving a thermodynamically-consistent Cahn-Hilliard Navier-Stokes system that models two-phase flows. In this work we extend the fully implicit method presented in Khanwale et al. [{it A fully-coupled fram ework for solving Cahn-Hilliard Navier-Stokes equations: Second-order, energy-stable numerical methods on adaptive octree based meshes.}, arXiv:2009.06628 (2020)], to a block iterative hybrid method. We use a projection-based semi-implicit time discretization for the Navier-Stokes and a fully-implicit time discretization for the Cahn-Hilliard equation. We use a conforming continuous Galerkin (cG) finite element method in space equipped with a residual-based variational multiscale (RBVMS) formulation. Pressure is decoupled using a projection step, which results in two linear positive semi-definite systems for velocity and pressure, instead of the saddle point system of a pressure-stabilized method. All the linear systems are solved using an efficient and scalable algebraic multigrid (AMG) method. We deploy this approach on a massively parallel numerical implementation using parallel octree-based adaptive meshes. The overall approach allows the use of relatively large time steps with much faster time-to-solve. We present comprehensive numerical experiments showing detailed comparisons with results from the literature for canonical cases, including the single bubble rise and Rayleigh-Taylor instability.
146 - Zhaoyang Qiu 2020
Using the Maslowski and Seidler method, the existence of invariant measure for 2-dimensional stochastic Cahn-Hilliard-Navier-Stokes equations with multiplicative noise is proved in state space $L_x^2times H^1$, working with the weak topology. Also, t he existence of global pathwise solution is investigated using the stochastic compactness argument.
We consider a diffuse interface model which describes the motion of an incompressible isothermal mixture of two immiscible fluids. This model consists of the Navier-Stokes equations coupled with a convective nonlocal Cahn-Hilliard equation. Several r esults were already proven by two of the present authors. However, in the two-dimensional case, the uniqueness of weak solutions was still open. Here we establish such a result even in the case of degenerate mobility and singular potential. Moreover, we show the strong-weak uniqueness in the case of viscosity depending on the order parameter, provided that either the mobility is constant and the potential is regular or the mobility is degenerate and the potential is singular. In the case of constant viscosity, on account of the uniqueness results we can deduce the connectedness of the global attractor whose existence was obtained in a previous paper. The uniqueness technique can be adapted to show the validity of a smoothing property for the difference of two trajectories which is crucial to establish the existence of an exponential attractor. The latter is established even in the case of variable viscosity, constant mobility and regular potential.
The motion of two contiguous incompressible and viscous fluids is described within the diffuse interface theory by the so-called Model H. The system consists of the Navier-Stokes equations, which are coupled with the Cahn-Hilliard equation associated to the Ginzburg-Landau free energy with physically relevant logarithmic potential. This model is studied in bounded smooth domain in R^d, d=2 and d=3, and is supplemented with a no-slip condition for the velocity, homogeneous Neumann boundary conditions for the order parameter and the chemical potential, and suitable initial conditions. We study uniqueness and regularity of weak and strong solutions. In a two-dimensional domain, we show the uniqueness of weak solutions and the existence and uniqueness of global strong solutions originating from an initial velocity u_0 in V, namely u_0 in H_0^1 such that div u_0=0. In addition, we prove further regularity properties and the validity of the instantaneous separation property. In a three-dimensional domain, we show the existence and uniqueness of local strong solutions with initial velocity u_0 in V.
168 - Daozhi Han , Xiaoming Wang 2014
We propose a novel second order in time numerical scheme for Cahn-Hilliard-Navier- Stokes phase field model with matched density. The scheme is based on second order convex-splitting for the Cahn-Hilliard equation and pressure-projection for the Navi er-Stokes equation. We show that the scheme is mass-conservative, satisfies a modified energy law and is therefore unconditionally stable. Moreover, we prove that the scheme is uncondition- ally uniquely solvable at each time step by exploring the monotonicity associated with the scheme. Thanks to the weak coupling of the scheme, we design an efficient Picard iteration procedure to further decouple the computation of Cahn-Hilliard equation and Navier-Stokes equation. We implement the scheme by the mixed finite element method. Ample numerical experiments are performed to validate the accuracy and efficiency of the numerical scheme.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا