ﻻ يوجد ملخص باللغة العربية
We survey the existing parts of a classification of finite groups generated by orthogonal transformations in a finite-dimensional Euclidean space whose fixed point subspace has codimension one or two and extend it to a complete classification. These groups naturally arise in the study of the quotient of a Euclidean space by a finite orthogonal group and hence in the theory of orbifolds.
We characterize finite groups G generated by orthogonal transformations in a finite-dimensional Euclidean space V whose fixed point subspace has codimension one or two in terms of the corresponding quotient space V/G with its quotient piecewise linear structure.
Answering a question of Dan Haran and generalizing some results of Aschbacher-Guralnick and Suzuki, we prove that given a set of primes pi, any finite group can be generated by a pi-subgroup and a pi-subgroup. This gives a free product description of a countably generated free profinite group.
This note is concerned with the geometric classification of connected Lie groups of dimension three or less, endowed with left-invariant Riemannian metrics. On the one hand, assembling results from the literature, we give a review of the complete cla
A unital $ell$-group $(G,u)$ is an abelian group $G$ equipped with a translation-invariant lattice-order and a distinguished element $u$, called order-unit, whose positive integer multiples eventually dominate each element of $G$. We classify finitel
It is proved that for any prime $p$ a finitely generated nilpotent group is conjugacy separable in the class of finite $p$-groups if and only if the torsion subgroup of it is a finite $p$-group and the quotient group by the torsion subgroup is abelian.