ﻻ يوجد ملخص باللغة العربية
We construct a two-dimensional action that is an extension of spherically symmetric Einstein-Lanczos-Lovelock gravity. The action contains arbitrary functions of the areal radius and the norm squared of its gradient, but the field equations are second order and obey Birkhoffs theorem. In complete analogy with spherically symmetric Einstein-Lanczos-Lovelock gravity, the field equations admit the generalized Misner-Sharp mass as the first integral that determines the form of the vacuum solution. The arbitrary functions in the action allow for vacuum solutions that describe a larger class of interesting nonsingular black-hole spacetimes than previously available.
We present a family of extensions of spherically symmetric Einstein-Lanczos-Lovelock gravity. The field equations are second order and obey a generalized Birkhoffs theorem. The Hamiltonian constraint can be written in terms of a generalized Misner-Sh
It is found that, when the coupling constants $alpha_p$ in the theory of regularized Lovelock gravity are properly chosen and the number of Lovelock tensors $prightarrow infty$, there exist a fairly large number of nonsingular (singularity free) blac
We show explicitly that the nonminimal coupling between the scalar field and the Ricci scalar in 2D dilaton gravity can be recast in the form of kinetic gravity braiding (KGB). This is as it should be, because KGB is the 2D version of the Horndeski t
In order to perform model-dependent tests of general relativity with gravitational wave observations, we must have access to numerical relativity binary black hole waveforms in theories beyond general relativity (GR). In this study, we focus on order
We report on a numerical investigation of the stability of scalarized black holes in Einstein dilaton Gauss-Bonnet (EdGB) gravity in the full dynamical theory, though restricted to spherical symmetry. We find evidence that for sufficiently small curv