ﻻ يوجد ملخص باللغة العربية
The increasing prevalence of rich sources of data and the availability of electronic medical record databases and electronic registries opens tremendous opportunities for enhancing medical research. For example, controlled trials are ubiquitously used to investigate the effect of a medical treatment, perhaps dependent on a set of patient covariates, and traditional approaches have relied primarily on randomized patient sampling and allocation to treatment and control group. However, when covariate data for a large cohort group of patients have already been collected and are available in a database, one can potentially design a treatment/control sample and allocation that provides far better estimates of the covariate-dependent effects of the treatment. In this paper, we develop a new approach that uses optimal design of experiments (DOE) concepts to accomplish this objective. The approach selects the patients for the treatment and control samples upfront, based on their covariate values, in a manner that optimizes the information content in the data. For the optimal sample selection, we develop simple guidelines and an optimization algorithm that provides solutions that are substantially better than random sampling. Moreover, our approach causes no sampling bias in the estimated effects, for the same reason that DOE principles do not bias estimated effects. We test our method with a simulation study based on a testbed data set containing information on the effect of statins on low-density lipoprotein (LDL) cholesterol.
Response-adaptive randomization (RAR) is part of a wider class of data-dependent sampling algorithms, for which clinical trials are used as a motivating application. In that context, patient allocation to treatments is determined by randomization pro
We propose an information borrowing strategy for the design and monitoring of phase II basket trials based on the local multisource exchangeability assumption between baskets (disease types). We construct a flexible statistical design using the propo
We propose BaySize, a sample size calculator for phase I clinical trials using Bayesian models. BaySize applies the concept of effect size in dose finding, assuming the MTD is defined based on an equivalence interval. Leveraging a decision framework
Often, government agencies and survey organizations know the population counts or percentages for some of the variables in a survey. These may be available from auxiliary sources, for example, administrative databases or other high quality surveys. W
In cluster randomized trials, patients are recruited after clusters are randomized, and the recruiters and patients may not be blinded to the assignment. This often leads to differential recruitment and systematic differences in baseline characterist