ترغب بنشر مسار تعليمي؟ اضغط هنا

Designed Sampling from Large Databases for Controlled Trials

105   0   0.0 ( 0 )
 نشر من قبل Liwen Ouyang
 تاريخ النشر 2015
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The increasing prevalence of rich sources of data and the availability of electronic medical record databases and electronic registries opens tremendous opportunities for enhancing medical research. For example, controlled trials are ubiquitously used to investigate the effect of a medical treatment, perhaps dependent on a set of patient covariates, and traditional approaches have relied primarily on randomized patient sampling and allocation to treatment and control group. However, when covariate data for a large cohort group of patients have already been collected and are available in a database, one can potentially design a treatment/control sample and allocation that provides far better estimates of the covariate-dependent effects of the treatment. In this paper, we develop a new approach that uses optimal design of experiments (DOE) concepts to accomplish this objective. The approach selects the patients for the treatment and control samples upfront, based on their covariate values, in a manner that optimizes the information content in the data. For the optimal sample selection, we develop simple guidelines and an optimization algorithm that provides solutions that are substantially better than random sampling. Moreover, our approach causes no sampling bias in the estimated effects, for the same reason that DOE principles do not bias estimated effects. We test our method with a simulation study based on a testbed data set containing information on the effect of statins on low-density lipoprotein (LDL) cholesterol.

قيم البحث

اقرأ أيضاً

Response-adaptive randomization (RAR) is part of a wider class of data-dependent sampling algorithms, for which clinical trials are used as a motivating application. In that context, patient allocation to treatments is determined by randomization pro babilities that are altered based on the accrued response data in order to achieve experimental goals. RAR has received abundant theoretical attention from the biostatistical literature since the 1930s and has been the subject of numerous debates. In the last decade, it has received renewed consideration from the applied and methodological communities, driven by successful practical examples and its widespread use in machine learning. Papers on the subject can give different views on its usefulness, and reconciling these may be difficult. This work aims to address this gap by providing a unified, broad and up-to-date review of methodological and practical issues to consider when debating the use of RAR in clinical trials.
We propose an information borrowing strategy for the design and monitoring of phase II basket trials based on the local multisource exchangeability assumption between baskets (disease types). We construct a flexible statistical design using the propo sed strategy. Our approach partitions potentially heterogeneous baskets into non-exchangeable blocks. Information borrowing is only allowed to occur locally, i.e., among similar baskets within the same block. The amount of borrowing is determined by between-basket similarities. The number of blocks and block memberships are inferred from data based on the posterior probability of each partition. The proposed method is compared to the multisource exchangeability model and Simons two-stage design, respectively. In a variety of simulation scenarios, we demonstrate the proposed method is able to maintain the type I error rate and have desirable basket-wise power. In addition, our method is computationally efficient compared to existing Bayesian methods in that the posterior profiles of interest can be derived explicitly without the need for sampling algorithms.
We propose BaySize, a sample size calculator for phase I clinical trials using Bayesian models. BaySize applies the concept of effect size in dose finding, assuming the MTD is defined based on an equivalence interval. Leveraging a decision framework that involves composite hypotheses, BaySize utilizes two prior distributions, the fitting prior (for model fitting) and sampling prior (for data generation), to conduct sample size calculation under desirable statistical power. Look-up tables are generated to facilitate practical applications. To our knowledge, BaySize is the first sample size tool that can be applied to a broad range of phase I trial designs.
Often, government agencies and survey organizations know the population counts or percentages for some of the variables in a survey. These may be available from auxiliary sources, for example, administrative databases or other high quality surveys. W e present and illustrate a model-based framework for leveraging such auxiliary marginal information when handling unit and item nonresponse. We show how one can use the margins to specify different missingness mechanisms for each type of nonresponse. We use the framework to impute missing values in voter turnout in a subset of data from the U.S. Current Population Survey (CPS). In doing so, we examine the sensitivity of results to different assumptions about the unit and item nonresponse.
In cluster randomized trials, patients are recruited after clusters are randomized, and the recruiters and patients may not be blinded to the assignment. This often leads to differential recruitment and systematic differences in baseline characterist ics of the recruited patients between intervention and control arms, inducing post-randomization selection bias. We aim to rigorously define causal estimands in the presence of selection bias. We elucidate the conditions under which standard covariate adjustment methods can validly estimate these estimands. We further discuss the additional data and assumptions necessary for estimating causal effects when such conditions are not met. Adopting the principal stratification framework in causal inference, we clarify there are two average treatment effect (ATE) estimands in cluster randomized trials: one for the overall population and one for the recruited population. We derive the analytical formula of the two estimands in terms of principal-stratum-specific causal effects. Further, using simulation studies, we assess the empirical performance of the multivariable regression adjustment method under different data generating processes leading to selection bias. When treatment effects are heterogeneous across principal strata, the ATE on the overall population generally differs from the ATE on the recruited population. A naive intention-to-treat analysis of the recruited sample leads to biased estimates of both ATEs. In the presence of post-randomization selection and without additional data on the non-recruited subjects, the ATE on the recruited population is estimable only when the treatment effects are homogenous between principal strata, and the ATE on the overall population is generally not estimable. The extent to which covariate adjustment can remove selection bias depends on the degree of effect heterogeneity across principal strata.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا