ﻻ يوجد ملخص باللغة العربية
We investigate the motion of a single particle moving on a two-dimensional square lattice whose sites are occupied by right and left rotators. These left and right rotators deterministically rotate the particles velocity to the right or left, respectively and emph{flip} orientation from right to left or from left to right after scattering the particle. We study three types of configurations of left and right rotators, which we think of as types of media, through with the particle moves. These are completely random (CR), random periodic (RP), and completely periodic (CP) configurations. For CR configurations the particles dynamics depends on the ratio $r$ of right to left scatterers in the following way. For small $rsimeq0$, when the configuration is nearly homogeneous, the particle subdiffuses with an exponent of 2/3, similar to the diffusion of a macromolecule in a crowded environment. Also, the particles trajectory has a fractal dimension of $d_fsimeq4/3$, comparable to that of a self-avoiding walk. As the ratio increases to $rsimeq 1$, the particles dynamics transitions from subdiffusion to anomalous diffusion with a fractal dimension of $d_fsimeq 7/4$, similar to that of a percolating cluster in 2-d. In RP configurations, which are more structured than CR configurations but also randomly generated, we find that the particle has the same statistic as in the CR case. In contrast, CP configurations, which are highly structured, typically will cause the particle to go through a transient stage of subdiffusion, which then abruptly changes to propagation. Interestingly, the subdiffusive stage has an exponent of approximately 2/3 and a fractal dimension of $d_fsimeq4/3$, similar to the case of CR and RP configurations for small $r$.
The problem of biological motion is a very intriguing and topical issue. Many efforts are being focused on the development of novel modeling approaches for the description of anomalous diffusion in biological systems, such as the very complex and het
Expanding media are typical in many different fields, e.g. in Biology and Cosmology. In general, a medium expansion (contraction) brings about dramatic changes in the behavior of diffusive transport properties. Here, we focus on such effects when the
Reaction-diffusion equations are widely used as the governing evolution equations for modeling many physical, chemical, and biological processes. Here we derive reaction-diffusion equations to model transport with reactions on a one-dimensional domai
In this minireview we present the main results regarding the transport properties of stochastic movement with relocations to known positions. To do so, we formulate the problem in a general manner to see several cases extensively studied during the l
A recent paper [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, Mathematical Foundations of Statistica