ﻻ يوجد ملخص باللغة العربية
This article is dedicated to the anisotropic sparse grid quadrature for functions which are analytically extendable into an anisotropic tensor product domain. Taking into account this anisotropy, we end up with a dimension independent error versus cost estimate of the proposed quadrature. In addition, we provide a novel and improved estimate for the cardinality of the underlying anisotropic index set. To validate the theoretical findings, we present several examples ranging from simple quadrature problems to diffusion problems on random domains. These examples demonstrate the remarkable convergence behaviour of the anisotropic sparse grid quadrature in applications.
We examine sparse grid quadrature on weighted tensor products (WTP) of reproducing kernel Hilbert spaces on products of the unit sphere, in the case of worst case quadrature error for rules with arbitrary quadrature weights. We describe a dimension a
Isogeometric Analysis (IGA) typically adopts tensor-product splines and NURBS as a basis for the approximation of the solution of PDEs. In this work, we investigate to which extent IGA solvers can benefit from the so-called sparse-grids construction
This work is a follow-up to our previous contribution (Convergence of sparse collocation for functions of countably many Gaussian random variables (with application to elliptic PDEs), SIAM J. Numer. Anal., 2018), and contains further insights on some
This paper continues to develop a fault tolerant extension of the sparse grid combination technique recently proposed in [B. Harding and M. Hegland, ANZIAM J., 54 (CTAC2012), pp. C394-C411]. The approach is novel for two reasons, first it provides se
We show the consistency of a threshold dynamics type algorithm for the anisotropic motion by fractional mean curvature, in the presence of a time dependent forcing term. Beside the consistency result, we show that convex sets remain convex during the