ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing Milky Ways hot gas halo density distribution using the dispersion measure of pulsars

74   0   0.0 ( 0 )
 نشر من قبل Yana Zhezher
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A number of recent studies indicates a significant amount of ionized gas in a form of the hot gas halo around the Milky Way. The halo extends over the region of 100 kpc and may be acountable for the missing baryon mass. In this paper we calculate the contribution of the proposed halo to the dispersion measure (DM) of the pulsars. The Navarro, Frenk & White (NFW), Maller & Bullock (MB) and Feldmann, Hooper & Gnedin (FHG) density distibutions are considered for the gas halo. The data set includes pulsars with the distance known independently from the DM, e.g. pulsars in globular clusters, LMC, SMC and pulsars with known parallax. The results exclude the NFW distribution for the hot gas, while the more realistic MB and FHG models are compatible with the observed dispersion measure.

قيم البحث

اقرأ أيضاً

We investigate the convective stability of two popular types of model of the gas distribution in the hot Galactic halo. We first consider models in which the halo density and temperature decrease exponentially with height above the disk. These halo m odels were created to account for the fact that, on some sight lines, the halos X-ray emission lines and absorption lines yield different temperatures, implying that the halo is non-isothermal. We show that the hot gas in these exponential models is convectively unstable if $gamma<3/2$, where $gamma$ is the ratio of the temperature and density scale heights. Using published measurements of $gamma$ and its uncertainty, we use Bayes Theorem to infer posterior probability distributions for $gamma$, and hence the probability that the halo is convectively unstable for different sight lines. We find that, if these exponential models are good descriptions of the hot halo gas, at least in the first few kiloparsecs from the plane, the hot halo is reasonably likely to be convectively unstable on two of the three sight lines for which scale height information is available. We also consider more extended models of the halo. While isothermal halo models are convectively stable if the density decreases with distance from the Galaxy, a model of an extended adiabatic halo in hydrostatic equilibrium with the Galaxys dark matter is on the boundary between stability and instability. However, we find that radiative cooling may perturb this model in the direction of convective instability. If the Galactic halo is indeed convectively unstable, this would argue in favor of supernova activity in the Galactic disk contributing to the heating the hot halo gas.
We present an analysis of the radial age gradients for the stellar halos of five Milky Way mass-sized systems simulated as part of the Aquarius Project. The halos show a diversity of age trends, reflecting their different assembly histories. Four of the simulated halos possess clear negative age gradients, ranging from approximately -7 to -19 Myr/kpc , shallower than those determined by recent observational studies of the Milky Ways stellar halo. However, when restricting the analysis to the accreted component alone, all of the stellar halos exhibit a steeper negative age gradient with values ranging from $-$8 to $-$32~Myr/kpc, closer to those observed in the Galaxy. Two of the accretion-dominated simulated halos show a large concentration of old stars in the center, in agreement with the Ancient Chronographic Sphere reported observationally. The stellar halo that best reproduces the current observed characteristics of the age distributions of the Galaxy is that formed principally by the accretion of small satellite galaxies. Our findings suggest that the hierarchical clustering scenario can reproduce the MWs halo age distribution if the stellar halo was assembled from accretion and disruption of satellite galaxies with dynamical masses less than ~10^9.5M_sun, and a minimal in situ contribution.
We present a new, high-resolution chronographic (age) map of the Milky Ways halo, based on the inferred ages of ~130,000 field blue horizontal-branch (BHB) stars with photometry from the Sloan Digital Sky Survey. Our map exhibits a strong central con centration of BHB stars with ages greater than 12 Gyr, extending up to ~15 kpc from the Galactic center (reaching close to the solar vicinity), and a decrease in the mean ages of field stars with distance by 1-1.5 Gyr out to ~45-50 kpc, along with an apparent increase of the dispersion of stellar ages, and numerous known (and previously unknown) resolved over-densities and debris streams, including the Sagittarius Stream. These results agree with expectations from modern LambdaCDM cosmological simulations, and support the existence of a dual (inner/outer) halo system, punctuated by the presence of over-densities and debris streams that have not yet completely phase-space mixed.
We present a comprehensive search for the 3.5 keV line, using $sim$51 Ms of archival Chandra observations peering through the Milky Ways Dark Matter Halo from across the entirety of the sky, gathered via the Chandra Source Catalog Release 2.0. We con sider the datas radial distribution, organizing observations into four data subsets based on angular distance from the Galactic Center. All data is modeled using both background-subtracted and background-modeled approaches to account for the particle instrument background, demonstrating statistical limitations of the currently-available $sim$1 Ms of particle background data. A non-detection is reported in the total data set, allowing us to set an upper-limit on 3.5 keV line flux and constrain the sterile neutrino dark matter mixing angle. The upper-limit on sin$^2$(2$theta$) is $2.58 times 10^{-11}$ (though systematic uncertainty may increase this by a factor of $sim$2), corresponding to the upper-limit on 3.5 keV line flux of $2.34 times 10^{-7}$ ph s$^{-1}$ cm$^{-2}$. These limits show consistency with recent constraints and several prior detections. Non-detections are reported in all radial data subsets, allowing us to constrain the spatial profile of 3.5 keV line intensity, which does not conclusively differ from Navarro-Frenk-White predictions. Thus, while offering heavy constraints, we do not entirely rule out the sterile neutrino dark matter scenario or the more general decaying dark matter hypothesis for the 3.5 keV line. We have also used the non-detection of any unidentified emission lines across our continuum to further constrain the sterile neutrino parameter space.
We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Ways halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierar chical assembly of the stellar halo. Using a cumulative close pair distribution (CPD) as a statistic in the 4-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock-observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at $rm r_{gc} < 20$ kpc.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا