ﻻ يوجد ملخص باللغة العربية
The ability to characterize static and time-dependent electric fields in situ is an important prerequisite for quantum-optics experiments with atoms close to surfaces. Especially in experiments which aim at coupling Rydberg atoms to the near field of superconducting circuits, the identification and subsequent elimination of sources of stray fields is crucial. We present a technique that allows the determination of stray-electric-field distributions $(F^text{str}_text{x}(vec{r}),F^text{str}_text{y}(vec{r}),F^text{str}_text{z}(vec{r}))$ at distances of less than $2~text{mm}$ from (cryogenic) surfaces using coherent Rydberg-Stark spectroscopy in a pulsed supersonic beam of metastable $1text{s}^12text{s}^1~{}^{1}S_{0}$ helium atoms. We demonstrate the capabilities of this technique by characterizing the electric stray field emanating from a structured superconducting surface. Exploiting coherent population transfer with microwave radiation from a coplanar waveguide, the same technique allows the characterization of the microwave-field distribution above the surface.
Helium atoms in Rydberg states have been manipulated coherently with microwave radiation pulses near a gold surface and near a superconducting NbTiN surface at a temperature of $3 text{K}$. The experiments were carried out with a skimmed supersonic b
The ability to sensitively detect charges under ambient conditions would be a fascinating new tool benefitting a wide range of researchers across disciplines. However, most current techniques are limited to low-temperature methods like single-electro
We discuss in detail the implementation of an open-system quantum simulator with Rydberg states of neutral atoms held in an optical lattice. Our scheme allows one to realize both coherent as well as dissipative dynamics of complex spin models involvi
In the last twenty years, Rydberg atoms have become a versatile and much studied system for implementing quantum many-body systems in the framework of quantum computation and quantum simulation. However, even in the absence of coherent evolution Rydb
We use the resonant dipole-dipole interaction between Rydberg atoms and a periodic external microwave field to engineer XXZ spin Hamiltonians with tunable anisotropies. The atoms are placed in 1D and 2D arrays of optical tweezers, allowing us to stud