ترغب بنشر مسار تعليمي؟ اضغط هنا

Statistical Analysis of Bus Networks in India

102   0   0.0 ( 0 )
 نشر من قبل Atanu Chatterjee
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Through the past decade the field of network science has established itself as a common ground for the cross-fertilization of exciting inter-disciplinary studies which has motivated researchers to model almost every physical system as an interacting network consisting of nodes and links. Although public transport networks such as airline and railway networks have been extensively studied, the status of bus networks still remains in obscurity. In developing countries like India, where bus networks play an important role in day-to-day commutation, it is of significant interest to analyze its topological structure and answer some of the basic questions on its evolution, growth, robustness and resiliency. In this paper, we model the bus networks of major Indian cities as graphs in textit{L}-space, and evaluate their various statistical properties using concepts from network science. Our analysis reveals a wide spectrum of network topology with the common underlying feature of small-world property. We observe that the networks although, robust and resilient to random attacks are particularly degree-sensitive. Unlike real-world networks, like Internet, WWW and airline, which are virtual, bus networks are physically constrained. The presence of various geographical and economic constraints allow these networks to evolve over time. Our findings therefore, throw light on the evolution of such geographically and socio-economically constrained networks which will help us in designing more efficient networks in the future.

قيم البحث

اقرأ أيضاً

In this paper, we study the structural properties of the complex bus network of Chennai. We formulate this extensive network structure by identifying each bus stop as a node, and a bus which stops at any two adjacent bus stops as an edge connecting t he nodes. Rigorous statistical analysis of this data shows that the Chennai bus network displays small-world properties and a scale-free degree distribution with the power-law exponent, $gamma > 3$.
Simple models of infectious diseases tend to assume random mixing of individuals, but real interactions are not random pairwise encounters: they occur within various types of gatherings such as workplaces, households, schools, and concerts, best desc ribed by a higher-order network structure. We model contagions on higher-order networks using group-based approximate master equations, in which we track all states and interactions within a group of nodes and assume a mean-field coupling between them. Using the Susceptible-Infected-Susceptible dynamics, our approach reveals the existence of a mesoscopic localization regime, where a disease can concentrate and self-sustain only around large groups in the network overall organization. In this regime, the phase transition is smeared, characterized by an inhomogeneous activation of the groups. At the mesoscopic level, we observe that the distribution of infected nodes within groups of a same size can be very dispersed, even bimodal. When considering heterogeneous networks, both at the level of nodes and groups, we characterize analytically the region associated with mesoscopic localization in the structural parameter space. We put in perspective this phenomenon with eigenvector localization and discuss how a focus on higher-order structures is needed to discern the more subtle localization at the mesoscopic level. Finally, we discuss how mesoscopic localization affects the response to structural interventions and how this framework could provide important insights for a broad range of dynamics.
Bus transportation is considered as one of the most convenient and cheapest modes of public transportation in Indian cities. Due to their cost-effectiveness and wide reachability, they help a significant portion of the human population in cities to r each their destinations every day. Although from a transportation point of view they have numerous advantages over other modes of public transportation, they also pose a serious threat of contagious diseases spreading throughout the city. The presence of numerous local spatial constraints makes the process and extent of epidemic spreading extremely difficult to predict. Also, majority of the studies have focused on the contagion processes on scale-free network topologies whereas, spatially-constrained real-world networks such as, bus networks exhibit a wide-spectrum of network topology. Therefore, we aim in this study to understand this complex dynamical process of epidemic outbreak and information diffusion on the bus networks for six different Indian cities using SI and SIR models. This will allow us to identify epidemic thresholds for these networks which will help us in controlling outbreaks by developing node-based immunization techniques.
Understanding the resilience of infrastructures such as transportation network has significant importance for our daily life. Recently, a homogeneous spatial network model was developed for studying spatial embedded networks with characteristic link length such as power-grids and the brain. However, although many real-world networks are spatially embedded and their links have characteristics length such as pipelines, power lines or ground transportation lines they are not homogeneous but rather heterogeneous. For example, density of links within cities are significantly higher than between cities. Here we present and study numerically and analytically a similar realistic heterogeneous spatial modular model using percolation process to better understand the effect of heterogeneity on such networks. The model assumes that inside a city there are many lines connecting different locations, while long lines between the cities are sparse and usually directly connecting only a few nearest neighbours cities in a two dimensional plane. We find that this model experiences two distinct continues transitions, one when the cities disconnect from each other and the second when each city breaks apart. Although the critical threshold for site percolation in 2D grid remains an open question we analytically find the critical threshold for site percolation in this model. In addition, while the homogeneous model experience a single transition having a unique phenomenon called textit{critical stretching} where a geometric crossover from random to spatial structure in different scales found to stretch non-linearly with the characteristic length at criticality. Here we show that the heterogeneous model does not experience such a phenomenon indicating that critical stretching strongly depends on the network structure.
69 - Junbo Jia , Zhen Jin , Xinchu Fu 2017
In the real world, many complex systems interact with other systems. In addition, the intra- or inter-systems for the spread of information about infectious diseases and the transmission of infectious diseases are often not random, but with direction . Hence, in this paper, we build epidemic model based on an interconnected directed network, which can be considered as the generalization of undirected networks and bipartite networks. By using the mean-field approach, we establish the Susceptible-Infectious-Susceptible model on this network. We theoretically analyze the model, and obtain the basic reproduction number, which is also the generalization of the critical number corresponding to undirected or bipartite networks. And we prove the global stability of disease-free and endemic equilibria via the basic reproduction number as a forward bifurcation parameter. We also give a condition for epidemic prevalence only on a single subnetwork. Furthermore, we carry out numerical simulations, and find that the independence between each nodes in- and out-degrees greatly reduce the impact of the networks topological structure on disease spread.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا