ترغب بنشر مسار تعليمي؟ اضغط هنا

Resilience of quasi-isodynamic stellarators against trapped-particle instabilities

108   0   0.0 ( 0 )
 نشر من قبل Josefine Henriette Elise Proll
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is shown that in perfectly quasi-isodynamic stellarators, trapped particles with a bounce frequency much higher than the frequency of the instability are stabilizing in the electrostatic and collisionless limit. The collisionless trapped-particle instability is therefore stable as well as the ordinary electron-density-gradient-driven trapped-electron mode. This result follows from the energy balance of electrostatic instabilities and is thus independent of all other details of the magnetic geometry.

قيم البحث

اقرأ أيضاً

236 - P. Helander , J. H. E. Proll , 2013
This is the first of two papers about collisionless, electrostatic micro-instabilities in stellarators, with an emphasis on trapped-particle modes. It is found that, in so-called maximum-$J$ configurations, trapped-particle instabilities are absent i n large regions of parameter space. Quasi-isodynamic stellarators have this property (approximately), and the theory predicts that trapped electrons are stabilizing to all eigenmodes with frequencies below the electron bounce frequency. The physical reason is that the bounce-averaged curvature is favorable for all orbits, and that trapped electrons precess in the direction opposite to that in which drift waves propagate, thus precluding wave-particle resonance. These considerations only depend on the electrostatic energy balance, and are independent of all geometric properties of the magnetic field other than the maximum-$J$ condition. However, if the aspect ratio is large and the instability phase velocity differs greatly from the electron and ion thermal speeds, it is possible to derive a variational form for the frequency showing that stability prevails in a yet larger part of parameter space than what follows from the energy argument. Collisionless trapped-electron modes should therefore be more stable in quasi-isodynamic stellarators than in tokamaks.
In fusion devices, the geometry of the confining magnetic field has a significant impact on the instabilities that drive turbulent heat loss. This is especially true of stellarators, where the trapped electron mode (TEM) is stabilised if specific opt imisation criteria are satisfied, as in the Wendelstein 7-X experiment (W7-X). Here we find, by numerical simulation, that W7-X indeed has low TEM-driven transport, and also benefits from stabilisation of the ion-temperature-gradient mode, giving theoretical support for the existence of enhanced confinement regimes at finite density gradients.
Optimised stellarators and other magnetic-confinement devices having the property that the average magnetic curvature is favourable for all particle orbits are called maximum-$J$ devices, and have recently been shown to be immune to trapped-particle instabilities driven by the density gradient. Gyrokinetic simulations reveal, however, that another instability can arise, which is also associated with particle trapping but causes less transport than typical trapped-electron modes. The nature of this instability is clarified here. It is shown to be similar to the ubiquitous mode in tokamaks, and is driven by ion free energy but requires trapped electrons to exist.
The linear collisionless damping of zonal flows is calculated for quasi-symmetric stellarator equilibria in flux-tube, flux-surface, and full-volume geometry. Equilibria are studied from the quasi-helical symmetry configuration of the Helically Symme tric eXperiment (HSX), a broken symmetry configuration of HSX, and the quasi-axial symmetry geometry of the National Compact Stellarator eXperiment (NCSX). Zonal flow oscillations and long-time damping affect the zonal flow evolution, and the zonal flow residual goes to zero for small radial wavenumber. The oscillation frequency and damping rate depend on the bounce-averaged radial particle drift in accordance with theory. While each flux tube on a flux surface is unique, several different flux tubes in HSX or NCSX can reproduce the zonal flow damping from a flux-surface calculation given an adequate parallel extent. The flux-surface or flux-tube calculations can accurately reproduce the full-volume long-time residual for moderate $k_x$, but the oscillation and damping time scales are longer in local representations, particularly for small $k_x$ approaching the system size.
It is shown that the magnetic-field coils of a stellarator can, at least in principle, be substantially simplified by the use of permanent magnets. Such magnets cannot create toroidal magnetic flux but they can be used to shape the plasma and thus to create poloidal flux and rotational transform, thereby easing the requirements on the magnetic-field coils. As an example, a quasiaxisymmetric stellarator configuration is constructed with only 8 circular coils (all identical) and permanent magnets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا