ﻻ يوجد ملخص باللغة العربية
We develop a proper nonempirical spin-density formalism for the van der Waals density functional (vdW-DF) method. We show that this generalization, termed svdW-DF, is firmly rooted in the single-particle nature of exchange and we test it on a range of spin systems. We investigate in detail the role of spin in the nonlocal-correlation driven adsorption of H$_2$ and CO$_2$ in the linear magnets Mn-MOF74, Fe-MOF74, Co-MOF74, and Ni-MOF74. In all cases, we find that spin plays a significant role during the adsorption process despite the general weakness of the molecular-magnetic responses. The case of CO$_2$ adsorption in Ni-MOF74 is particularly interesting, as the inclusion of spin effects results in an increased attraction, opposite to what the diamagnetic nature of CO$_2$ would suggest. We explain this counter-intuitive result, tracking the behavior to a coincidental hybridization of the O $p$ states with the Ni $d$ states in the down-spin channel. More generally, by providing insight on nonlocal correlation in concert with spin effects, our nonempirical svdW-DF method opens the door for a deeper understanding of weak nonlocal magnetic interactions.
It is textbookly regarded that phonons, i.e., an energy quantum of propagating lattice waves, are the main heat carriers in perfect crystals. As a result, in many crystals, e.g., bulk silicon, the temperature-dependent thermal conductivity shows the
We present a three-dimensional Ising model where lines of equal spins are frozen in such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this porous
The ability of metal-organic frameworks (MOFs) to gelate under specific synthetic conditions opens up new opportunities in the preparation and shaping of hierarchically porous MOF monoliths, which could be directly implemented for catalytic and adsor
Cooperative adsorption of gases by porous frameworks permits more efficient uptake and removal than does the more usual non-cooperative (Langmuir-type) adsorption. Cooperativity, signaled by a step-like isotherm, is usually attributed to a phase tran
The metal-organic framework (MOF) MFU-4l containing Co(II) centers and Cl- ligands has recently shown promising redox activity. Aiming for further improved MOF catalysts for oxidation processes employing molecular oxygen we present a density-function