ترغب بنشر مسار تعليمي؟ اضغط هنا

The IMF-sensitive 1.14-micron Na I doublet in early-type galaxies

103   0   0.0 ( 0 )
 نشر من قبل Russell J. Smith
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present J-band spectroscopy of passive galaxies focusing on the Na I doublet at 1.14 {mu}m. Like the Na I 0.82 {mu}m doublet, this feature is strong in low-mass stars and hence may provide a useful probe of the initial mass function (IMF). From high signal-to-noise composite spectra, we find that Na I 1.14 {mu}m increases steeply with increasing velocity dispersion, {sigma}, and for the most massive galaxies (sigma > 300 km/s) is much stronger than predicted from synthetic spectra with Milky-Way-like IMFs and solar abundances. Reproducing Na I 1.14 {mu}m at high {sigma} likely requires either a very high [Na/H], or a bottom-heavy IMF, or a combination of both. Using the Na D line to break the degeneracy between IMF and abundance, we infer [Na/H] $approx$ +0.5 and a steep IMF (single-slope-equivalent x $approx$ 3.2, where x = 2.35 for Salpeter), for the high-sigma galaxies. At lower mass ({sigma} = 50-100 km/s), the line strengths are compatible with MW-like IMFs and near-solar [Na/H]. We highlight two galaxies in our sample where strong gravitational lensing masses favour MW-like IMFs. Like the high-{sigma} sample on average, these galaxies have strong Na I 1.14 mu m; taken in isolation their sodium indices imply bottom-heavy IMFs which are hard to reconcile with the lensing masses. An alternative full-spectrum-fitting approach, applied to the high-sigma sample, recovers an IMF less heavy than Salpeter, but under-predicts the Na I 1.14 mu m line at the 5{sigma} level. We conclude that current models struggle to reproduce this feature in the most massive galaxies without breaking other constraints, and caution against over-reliance on the sodium lines in spectroscopic IMF studies.

قيم البحث

اقرأ أيضاً

Using new long-slit spectroscopy obtained with X-Shooter at ESO-VLT, we study, for the first time, radial gradients of optical and Near-Infrared IMF-sensitive features in a representative sample of galaxies at the very high-mass end of the galaxy pop ulation. The sample consists of seven early-type galaxies (ETGs) at $zsim0.05$, with central velocity dispersion in the range $300<sigma<350$km/s. Using state-of-art stellar population synthesis models, we fit a number of spectral indices, from different chemical species (including TiOs and Na indices), to constrain the IMF slope (i.e. the fraction of low-mass stars), as a function of galactocentric distance, over a radial range out to $sim4$kpc. ETGs in our sample show a significant correlation of IMF slope and surface mass density. The bottom-heavy population (i.e. an excess of low-mass stars in the IMF) is confined to central galaxy regions with surface mass density above $sim 10^{10} M_odot kpc^{-2}$, or, alternatively, within a characteristic radius of $sim2$~kpc. Radial distance, in physical units, and surface mass density, are the best correlators to IMF variations, with respect to other dynamical (e.g. velocity dispersion) and stellar population (e.g. metallicity) properties. Our results for the most massive galaxies suggest that there is no single parameter} that fully explains variations in the stellar IMF, but IMF radial profiles at z$sim$0 rather result from the complex formation and mass accretion history of galaxy inner and outer regions.
147 - Carsten Weidner 2013
Observational studies are showing that the galaxy-wide stellar initial mass function are top-heavy in galaxies with high star-formation rates (SFRs). Calculating the integrated galactic stellar initial mass function (IGIMF) as a function of the SFR o f a galaxy, it follows that galaxies which have or which formed with SFRs > 10 Msol yr^-1 would have a top-heavy IGIMF in excellent consistency with the observations. Consequently and in agreement with observations, elliptical galaxies would have higher M/L ratios as a result of the overabundance of stellar remnants compared to a stellar population that formed with an invariant canonical stellar initial mass function (IMF). For the Milky Way, the IGIMF yields very good agreement with the disk- and the bulge-IMF determinations. Our conclusions are that purely stochastic descriptions of star formation on the scales of a pc and above are falsified. Instead, star formation follows the laws, stated here as axioms, which define the IGIMF theory. We also find evidence that the power-law index beta of the embedded cluster mass function decreases with increasing SFR. We propose further tests of the IGIMF theory through counting massive stars in dwarf galaxies.
MOdified Newtonian dynamics (MOND) represents a phenomenological alternative to dark matter (DM) for the missing mass problem in galaxies and clusters of galaxies. We analyze the central regions of a local sample of $sim 220$ early-type galaxies from the $rm ATLAS^{3D}$ survey, to see if the data can be reproduced without recourse to DM. We estimate dynamical masses in the MOND context through Jeans analysis, and compare to $rm ATLAS^{3D}$ stellar masses from stellar population synthesis. We find that the observed stellar mass--velocity dispersion relation is steeper than expected assuming MOND with a fixed stellar initial mass function (IMF) and a standard value for the acceleration parameter $a_{rm 0}$. Turning from the space of observables to model space, a) fixing the IMF, a universal value for $a_{rm 0}$ cannot be fitted, while, b) fixing $a_{rm 0}$ and leaving the IMF free to vary, we find that it is lighter (Chabrier-like) for low-dispersion galaxies, and heavier (Salpeter-like) for high dispersions. This MOND-based trend matches inferences from Newtonian dynamics with DM, and from detailed analysis of spectral absorption lines, adding to the converging lines of evidence for a systematically-varying IMF.
We study the spatial distribution of faint satellites of intermediate redshift (0.1<z<0.8), early-type galaxies, selected from the GOODS fields. We combine high resolution HST images and state-of-the-art host subtraction techniques to detect satellit es of unprecedented faintness and proximity to intermediate redshift host galaxies (up to 5.5 magnitudes fainter and as close as 0.5/2.5 kpc to the host centers). We model the spatial distribution of objects near the hosts as a combination of an isotropic, homogenous background/foreground population and a satellite population with a power law radial profile and an elliptical angular distribution. We detect a significant population of satellites, Ns =1.7 (+0.9,-0.8) that is comparable to the number of Milky Way satellites with similar host-satellite contrast.The average projected radial profile of the satellite distribution is isothermal, gamma_p= -1.0(+0.3,-0.4), which is consistent with the observed central mass density profile of massive early-type galaxies. Furthermore, the satellite distribution is highly anisotropic (isotropy is ruled out at a >99.99% confidence level). Defining phi to be the offset between the major axis of the satellite spatial distribution and the major axis of the host light profile, we find a maximum posterior probability of phi = 0 and |phi| less than 42 degrees at the 68% confidence level. The alignment of the satellite distribution with the light of the host is consistent with simulations, assuming that light traces mass for the host galaxy as observed for lens galaxies. The anisotropy of the satellite population enhances its ability to produce the flux ratio anomalies observed in gravitationally lensed quasars.
Using samples drawn from the Sloan Digital Sky Survey, we study for the first time the relation between large-scale environments (Clusters, Groups and Voids) and the stellar Initial Mass Function (IMF). We perform an observational approach based on t he comparison of IMF-sensitive indices of quiescent galaxies with similar mass in varying environments. These galaxies are selected within a narrow redshift interval ($ 0.020 < z < 0.055 $) and spanning a range in velocity dispersion from 100 to 200 kms$^{-1}$. The results of this paper are based upon analysis of composite spectra created by stacking the spectra of galaxies, binned by their velocity dispersion and redshift. The trends of spectral indices as measured from the stacked spectra, with respect to velocity dispersion, are compared in different environments. We find a lack of dependence of the IMF on the environment for intermediate-mass galaxy regime. We verify this finding by providing a more quantitative measurement of the IMF variations among galactic environments using MILES stellar population models with a precision of $DeltaGamma_{b}sim0.2$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا