ﻻ يوجد ملخص باللغة العربية
It is well known that newly formed planetary systems undergo processes of orbital reconfiguration and planetary migration. As a result, planets or protoplanetary objects may accrete onto the central star, being fused and mixed into its external layers. If the accreted mass is sufficiently high and the star has a sufficiently thin convective envelope, such events may result in a modification of the chemical composition of the stellar photosphere in an observable way, enhancing it with elements that were abundant in the accreted mass. The recent Gaia-ESO Survey observations of the 10-20 Myr old Gamma Velorum cluster have enabled identifying a star that is significantly enriched in iron with respect to other cluster members. In this Letter we further investigate the abundance pattern of this star, showing that its abundance anomaly is not limited to iron, but is also present in the refractory elements, whose overabundances are correlated with the condensation temperature. This finding strongly supports the hypothesis of a recent accretion of rocky material.
The extensive stellar spectroscopic datasets that are available for studies in Galactic Archeaology thanks to, for example, the Gaia-ESO Survey, now benefit from having a significant number of targets that overlap with asteroseismology projects such
Open clusters (OCs) are recognised as excellent tracers of Galactic thin-disc properties. At variance with intermediate-age and old OCs, for which a significant number of studies is now available, clusters younger than 150 Myr have been mostly overlo
Context. The origin and dynamical evolution of star clusters is an important topic in stellar astrophysics. Several models have been proposed to understand the formation of bound and unbound clusters and their evolution, and these can be tested by ex
Context. Recent metallicity determinations in young open clusters and star-forming regions suggest that the latter may be characterized by a slightly lower metallicity than the Sun and older clusters in the solar vicinity. However, these results are
The Gaia-ESO survey (GES) is now in its fifth and last year of observations, and has already produced tens of thousands of high-quality spectra of stars in all Milky Way components. This paper presents the strategy behind the selection of astrophysic