ﻻ يوجد ملخص باللغة العربية
We report the impact of silver addition on granularity of NdFeAsO0.8F0.2 superconductor. The ac susceptibility and electrical resistivity under magnetic field are measured to study the improvement in weak links of NdFeAsO0.8F0.2 with addition of Ag. The Ag free NdFeAsO0.8F0.2 compound shows superconductivity at around 51.8K. Typical two step superconducting transitions due to the inter and intra grain contributions, induced from the combined effect of superconducting grains and the inter-granular weak-coupled medium respectively are clearly seen in susceptibility plots. In comparison to the pure NdFeAsO0.8F0.2 compound, the coupling between the superconducting grains is significantly improved for 20Ag silver doped sample, and the same is deteriorated for higher Ag content i.e., for 30wt Ag sample. The magneto transport measurements R(T)H of polycrystalline 20Ag doped NdFeAsO0.8F0.2, exhibited the upper critical filed [Hc2(0)] of up to 334Tesla, which is slightly higher than the one observed for pure NdFeAsO0.8F0.2. The flux flow activation energy varies from 7143.38K to 454.77K with magnetic field ranging from 0Tesla to 14Tesla for 20wtAg doped NdFeAsO0.8F0.2. In this investigation, our results show that limited addition of Ag improves the granular coupling of superconducting grains of NdFeAsO0.8F0.2 compound.
We report the impact of Ni doping on superconductivity of PdTe superconductor. The superconducting parameters like critical temperature (Tc), upper critical field (Hc2) and normalized specific-heat jump are reported for Ni doped Pd1-xNixTe. The sampl
We report the first-principles study on the H-intercalated Cr-based superconductor KCr$_3$As$_3$H$_x$. Our results show a paramagnetic ground state for KCr$_3$As$_3$H. The electronic structure consists of two quasi-one-dimensional (Q1D) Fermi-surface
Single crystalline CaFe2As2 and (Ca1-xNax)Fe2As2 polycrystals (0 < x < 0.66) are synthesized and characterized using structural, magnetic, electronic transport, and heat capacity measurements. These measurements show that the structural/magnetic phas
The new rare-earth arsenate superconductors are layered, low carrier density compounds with many similarities to the high-Tc cuprates. An important question is whether they also exhibit weak-coupling across randomly oriented grain-boundaries. In this
Significant progress has been achieved in fabricating high quality bulk and thinfilm iron-based superconductors. In particular, artificial layered pnictide superlattices offer the possibility of tailoring the superconducting properties and understand