ﻻ يوجد ملخص باللغة العربية
Due to a large discrepancy between theory and experiment, the electronic character of crystalline boron carbide B$_{13}$C$_{2}$ has been a controversial topic in the field of icosahedral boron-rich solids. We demonstrate that this discrepancy is removed when configurational disorder is accurately considered in the theoretical calculations. We find that while ordered ground state B$_{13}$C$_{2}$ is metallic, configurationally disordered B$_{13}$C$_{2}$, modeled with a superatom-special quasirandom structure method, goes through a metal to non-metal transition as the degree of disorder is increased with increasing temperature. Specifically, one of the chain-end carbon atoms in the CBC chains substitutes a neighboring equatorial boron atom in a B$_{12}$ icosahedron bonded to it, giving rise to a B$_{11}$C$^{e}$(BBC) unit. The atomic configuration of the substitutionally disordered B$_{13}$C$_{2}$ thus tends to be dominated by a mixture between B$_{12}$(CBC) and B$_{11}$C$^{e}$(BBC). Due to splitting of valence states in B$_{11}$C$^{e}$(BBC), the electron deficiency in B$_{12}$(CBC) is gradually compensated.
Configurationally disordered crystalline boron carbide, B$_{4}$C, is studied using first-principles calculations. We investigate both dilute and high concentrations of carbon-boron substitutional defects. For the latter purpose, we suggest a superato
In the present work, ternary Special Quasirandom Structures (SQSs) for a fcc solid solution phase are generated at different compositions, $x_A=x_B=x_C=tfrac{1}{3}$ and $x_A=tfrac{1}{2}$, $x_B=x_C=tfrac{1}{4}$, whose correlation functions are satisfa
Given the consensus that pressure improves cation order in most of known materials, a discovery of pressure-induced disorder could require reconsideration of order-disorder transition in solid state physics/chemistry and geophysics. Double perovskite
We report structural and physical properties of the single crystalline ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$. The X-ray diffraction(XRD) results show that ${mathrm{Ca}}{mathrm{Mn}}_{2}{mathrm{P}}_{2}$ adopts the trigonal ${mathrm{Ca}}{mathrm{
We present a comprehensive set of first principles electronic structure calculations to study transition metal solutes and their interactions with point defects in austenite. Clear trends were observed across the series. Solute-defect interactions we