ترغب بنشر مسار تعليمي؟ اضغط هنا

Degradation of Phosphorene in Air: Understanding at Atomic Level

54   0   0.0 ( 0 )
 نشر من قبل Gaoxue Wang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Phosphorene is a promising two dimensional (2D) material with a direct band gap, high carrier mobility, and anisotropic electronic properties. Phosphorene-based electronic devices, however, are found to degrade upon exposure to air. In this paper, we provide an atomic level understanding of stability of phosphorene in terms of its interaction with O2 and H2O. The results based on density functional theory together with first principles molecular dynamics calculations show that O2 could spontaneously dissociate on phosphorene at room temperature. H2O will not strongly interact with pristine phosphorene, however, an exothermic reaction could occur if phosphorene is first oxidized. The pathway of oxidation first followed by exothermic reaction with water is the most likely route for the chemical degradation of the phosphorene-based devices in air.

قيم البحث

اقرأ أيضاً

Low stability of organic-inorganic perovskite (CH3NH3PbI3) solar cells in humid air environments is a serious drawback which could limit practical application of this material severely. In this study, from real-time spectroscopic ellipsometry charact erization, the degradation mechanism of ultra-smooth CH3NH3PbI3 layers prepared by a laser evaporation technique is studied. We present evidence that the CH3NH3PbI3 degradation in humid air proceeds by two competing reactions of (i) the PbI2 formation by the desorption of CH3NH3I species and (ii) the generation of a CH3NH3PbI3 hydrate phase by H2O incorporation. In particular, rapid phase change occurs in the near-surface region and the CH3NH3PbI3 layer thickness reduces rapidly in the initial 1-h air exposure even at a low relative humidity of 40%. After the prolonged air exposure, the CH3NH3PbI3 layer is converted completely to hexagonal platelet PbI2/hydrate crystals that have a distinct atomic-scale multilayer structure with a period of 0.65 nm. We find that conventional x-ray diffraction and optical characterization in the visible region, used commonly in earlier works, are quite insensitive to the surface phase change. Based on results obtained in this work, we discuss the degradation mechanism of CH3NH3PbI3 in humid air.
Utilizing a combination of low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and electronic structure calculations, we characterize the structural and electronic properties of single atomic vacancies within several monolayers of th e surface of black phosphorus. We illustrate, with experimental analysis and tight-binding calculations, that we can depth profile these vacancies and assign them to specific sublattices within the unit cell. Measurements reveal that the single vacancies exhibit strongly anisotropic and highly delocalized charge density, laterally extended up to 20 atomic unit cells. The vacancies are then studied with STS, which reveals in-gap resonance states near the valence band edge and a strong p-doping of the bulk black phosphorus crystal. Finally, quasiparticle interference generated near these vacancies enables the direct visualization of the anisotropic band structure of black phosphorus.
The anisotropic nature of the new two-dimensional (2D) material phosphorene, in contrast to other 2D materials such as graphene and transition metal dichalcogenide (TMD) semiconductors, allows excitons to be confined in a quasi-one-dimensional (1D) s pace predicted in theory, leading to remarkable phenomena arising from the reduced dimensionality and screening. Here, we report a trion (charged exciton) binding energy of 190 meV in few-layer phosphorene at room temperature, which is nearly one to two orders of magnitude larger than those in 2D TMD semiconductors (20-30 meV) and quasi-2D quantum wells (1-5 meV). Such a large binding energy has only been observed in truly 1D materials such as carbon nanotubes, whose optoelectronic applications have been severely hurdled by their intrinsically small optical cross-sections. Phosphorene offers an elegant way to overcome this hurdle by enabling quasi-1D excitonic and trionic behaviors in a large 2D area, allowing optoelectronic integration. We experimentally validated the quasi-1D nature of excitonic and trionic dynamics in phospherene by demonstrating completely linearly polarized light emission from excitons and trions. The implications of the extraordinarily large trion binding energy in a higher-than-one-dimensional material are far-reaching. It provides a room-temperature 2D platform to observe the fundamental many-body interactions in the quasi-1D region. The strong photoluminescence emission in phosphorene has been electrically tuned over a large spectral range at room temperature, which opens a new route for tunable light sources.
Gallium selenide (GaSe) is a novel two-dimensional material, which belongs to the layered III-VIA semiconductors family and attracted interest recently as it displays single-photon emitters at room temperature and strong optical non-linearity. Noneth eless, few-layer GaSe is not stable under ambient conditions and it tends to degrade over time. Here we combine atomic force microscopy, Raman spectroscopy and optoelectronic measurements in photodetectors based on thin GaSe to study its long-term stability. We found that the GaSe flakes exposed to air tend to decompose forming firstly amorphous selenium and Ga2Se3 and subsequently Ga2O3. While the first stage is accompanied by an increase in photocurrent, in the second stage we observe a decrease in photocurrent which leads to the final failure of GaSe photodetectors. Additionally, we found that the encapsulation of the GaSe photodetectors with hexagonal boron nitride (h-BN) can protect the GaSe from degradation and can help to achieve long-term stability of the devices.
Phosphorene is a new two-dimensional material composed of a single or few atomic layers of black phosphorus. Phosphorene has both an intrinsic tunable direct band gap and high carrier mobility values, which make it suitable for a large variety of opt ical and electronic devices. However, the synthesis of single-layer phosphorene is a major challenge. The standard procedure to obtain phosphorene is by exfoliation. More recently, the epitaxial growth of single-layer phosphorene on Au(111) has been investigated by molecular beam epitaxy and the obtained structure has been described as a blue-phosphorene sheet. In the present study, large areas of high-quality monolayer phosphorene, with a band gap value at least equal to 0.8 eV, have been synthesized on Au(111). Our experimental investigations, coupled with DFT calculations, give evidence of two distinct phases of blue phosphorene on Au(111), instead of one as previously reported, and their atomic structures have been determined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا